

C Language Programming
Part II: Data Communications

For 8 Series Mobile Computers

 Version 4.31

Copyright © 2007~2015 CIPHERLAB CO., LTD.
All rights reserved

The software contains proprietary information of CIPHERLAB CO., LTD.; it is provided
under a license agreement containing restrictions on use and disclosure and is also
protected by copyright law. Reverse engineering of the software is prohibited.

Due to continued product development this information may change without notice. The
information and intellectual property contained herein is confidential between CIPHERLAB
and the client and remains the exclusive property of CIPHERLAB CO., LTD. If you find
any problems in the documentation, please report them to us in writing. CIPHERLAB
does not warrant that this document is error-free.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying,
recording or otherwise without the prior written permission of CIPHERLAB CO., LTD.

For product consultancy and technical support, please contact your local sales
representative. Also, you may visit our web site for more information.

The CipherLab logo is a registered trademark of CIPHERLAB CO., LTD.

All brand, product and service, and trademark names are the property of their registered
owners.

The editorial use of these names is for identification as well as to the benefit of the
owners, with no intention of infringement.

CIPHERLAB CO., LTD.
Website: http://www.cipherlab.com

http://www.cipherlab.com/

Version Date Notes

4.31 Jun. 16, 2015 Part I

 Modified: 2.2.1 – ScannerDesTbl2[16] for 8400 added

 Modified: Appendix I –
SCANNERDESTBL2[]

*Byte 0 [bit 0~6] 8200/8400 added
*Byte 1 [bit 0~4] 8200/8400 added
*Byte 2 [bit 0~5] 8200/8400 added for Quiet Zone Check setting

 Modified: Appendix II –
SCAN ENGINE, CCD OR LASER (UPC/EAN Families)

*EAN-13 ADDON MODE: Byte 0 [bit 0~6] 8400 added
*ADDON SECURITY FOR UPC/EAN: Byte 1 [bit 0~4] 8400 added

for Addon security for UPC/EAN barcodes

Part II

 Modified: 1.4.1 – BT_ACL_DEVICE added

 Modified: 4.1.3 – Note for 8231 added

 Modified: 4.1.4 – Note for 8231 added

 Modified: Appendix III – Wireless Netorking: descriptions and
table updated with 8231

RELEASE NOTES

4.30 Mar. 06, 2015 Part I

 Modified: 2.2.1 – variable of ScannerDesTbl2[16] added

 Modified: 2.2.3 – descriptions for ScannerDesTbl2 added

 Modified: 2.4.1 – 3rd ELEMENT: INTER-CHARACTER DELAY (time
range & example revised)

 Modified: Appendix I –
Replace ”Symbology Parameter Table I” with “Symbology Parameter
Table for CCD/LASER/Long Ranger Reader” section title,
and ”Symbology Parameter Table II” with “Symbology Parameter
Table for 2D/Extra Long Ranger Reader” section title

 Modified: Appendix I – “Symbology Parameter Table for
CCD/LASER/Long Ranger Reader” ScannerDesTbl2[]: Bytes 2 ~
15 reserved for 8200

 Modified: Appendix I – “Symbology Parameter Table for 2D/Extra
Long Ranger Reader” ScannerDesTbl[]: Bytes 45 ~ 47 reserved
for 8200/8300/8400/8700; Bytes 45 ~ 82 reserved for 8500

 Modified: Appendix II – ScannerDesTbl2[] (bytes 0 & 1) added in
UPC/EAN Families

Part II

- None –

4.30 Feb. 05, 2015 Part I

 Modified: 2.4.1 – 3rd ELEMENT: INTER-CHARACTER DELAY (time
range & example revised)

4.29 Dec. 16, 2014 Part I

- None –

Part II

 Modified: 1.3.1 – COMM_RF of SetCommType revised

 Modified: 5.1 – CipherLab ACL Packet Data added

 Modified: 5.2.1 – ACL36xx[16], ReservedByte[204]

 New: 5.3.6 ACL Functions

 Modified: Appendix IV – ACL added in Bluetooth Examples section

 Modified: Appendix IV – Bluetooth HID/USB HID: Subscript 2, Bit 7
& 6-1 added; keyboard wedge type “15” added

4.28 Sep. 19, 2014 Part I

 Modified: 2.10.1 – 8300 supports the “putch” function

 Modified: 2.11.6 - SHAPE_FILL of circle/rectangle corrected

 Modified: 2.15.7 DBF Files and IDX Files –
lseek_DBF/member_in_DBF/tell_DBF: on error, it returns -1
rebuild_index: ruturns 1 for success; returns 0 for failure

Part II

- None –

4.27 Mar. 28, 2014 Part I

 Modified: Appendix I - Symbology Table I: Byte 11, bit 5 (GTIN
-> GTIN-14)

 Removed: Appendix I - Symbology Table II: Byte 44, bit 2 (GS1
formatting for GS1 DataMatrix)

 Modified: Appendix II – Scan Engine, CCD or Laser - GTIN: Byte
11, bit 5 (GTIN -> GTIN-14)

 Removed: Appendix II – 2D SCAN ENGINE ONLY:

>2D SYMBOLOGIES | MAXICODE, DATA MATRIX & QR CODE: Byte
44, Bit 2

Part II

 Modified: 4.1.1 NETCONFIG Structure – parameters added

 Modified: Appendix II – Wireless Networking table – indexes
57, 58, 91, 92, 93 added

4.26 Feb. 12, 2014 Part I

 Modified: 2.2.1 Barcod Decoding –
>ScannerDesTbl[45] for 8300
>FsEAN128[2], AIMark[2] arrays added

 Modified: 2.10 KEYPAD | 2.10.1 GENERAL –

>8000 supports OSKToggle, SetTrigger commands

 Modified: 2.10 KEYPAD | 2.10.6 Enter Key –

>SetMiddleEnter command added for 8400/8700

>SetPistolEnter command added for 8200/8700

 Modified: 2.13 Fonts | 2.13.4 Special Fonts –

>8200/8400/8700 support Turkish (SetLanguage command)

 Modified: Appendix I – SCANNERDESTBL ARRAY
SYMBOLOGY PARAMETER TABLE I

>Byte 4, Bit 2: Code39 security

>Byte 7, Bit 2: GS1 formatting for EAN-128

>Byte 7, Bit 1: GS1 formatting for GS1 DataBar Family

>Byte 11, Bit 6: Convert EAN8 to EAN13 Format

SYMBOLOGY PARAMETER TABLE II

>Byte 7, Bit 2: GS1 formatting for EAN-128

>Byte 25, Bit 4: Enable/Disable TCIF Linked Code 39 ->‘0’ (default)

>Byte 43, Bit 7~5 added

>Byte 44, Bit 7~3 added

 Modified: Appendix II Symbology Parameters –
Scan Engine, CCD or Laser

>Code39: Byte 4, Bit 2

>CODE 128/EAN-128/ISBT 128: Byte 7, Bit 2

>GS1 DataBar FAMILY: Byte 7, Bit 1

>UPC/EAN FAMILIES: Byte 11, Bit 6

>UPC/EAN FAMILIES: UPC-E Triple Check descriptions

SCAN ENGINE, 2D OR (EXTRA) LONG RANGE LASER

>CODE 128 | UCC/EAN-128: Byte 7, Bit 2

>GS1 DataBar FAMILY: Byte 44, Bit 7~5

2D SCAN ENGINE ONLY

>COMPOSITE CODES | CC-A/B/C: Byte 44, Bit 4~3

>2D SYMBOLOGIES | MAXICODE, DATA MATRIX & QR CODE: Byte
44, Bit 2

 Modified: Appendix III Scanner Parameters –

>USER PREFERENCES: Byte 43, Bit 7

>READ REDUNDANCY: Byte 43, Bit 6~5

Part II

- None –

4.25 Mar. 27, 2013 Part I

 Modified: Introduction – the mention of “Chapter 5 Simulator”
removed

 Modified: 2.2.2 Code Type – CodeType Table II: add 8400/8700 2D
scan engine to Composite_CC_A/B/C symbologies (Decimal
47/55/118)

 Modified: 2.4.1 WedgeSetting[0] setting value table updated
(11~14)

 Modified: 2.10.1 OSKToggle (8400/8700 models supported)

 Modified: 2.15.9 GetFileInfo (8400/8700 models supported)

 Modified: Appendix I – Symbology Parameter Table II: add
8400/8700 2D scan engine to Bit 0 of Byte 9 (Convert UPC-A to
EAN-13)

 Modified: Appendix II – Scan Engine, 2D or (Extra) Long Ranger
Laser – UPC/EAN Families: add 8400/8700 2D scan engine to Bit 0
of Byte 9 (Convert UPC-A to EAN-13)

Part II

 Modified: Introduction – the mention of “Chapter 5 Simulator”
removed

 Modified: 2.2.2 Socket function – parameters of SOCK_RAW type &
ICMP protocol removed

4.24 Dec. 21, 2012 Part I

 Modified: 2.2.2 CodeType Tbale II – Composite_CC_A/B/C added

 Added: 2.10 Keypad – OSKToggle command added

 Modified: 2.13.1 Font Size – 20X20 added

 Modified: 2.13.4 Special Fonts – CheckFont, GetFont, SetFont
modified

 Added: 2.15.9 Get File Information – GetFileInfo command added

 Modified: Appendix I – Symbology Parameter Table II – bit 0 of
Byte 9 added with “8200 2D” scan engine

 Modified: Appendix II – SCAN ENGINE, 2D OR (EXTRA) LONG
RANGE LASER – UPC/EAN Families – “8200 2D” scan engine added

Part II

- None –

4.23 Jun. 20, 2012 Part I

 New: 2.10.1 General: SetTrigger – 8200/8400/8700 get supported

 New: 2.11 LCD: GetBklitLevel(), SetBklitLevel(), SetAutoBklit() –
8400/8700 gets supported

Part II

 New: 4.1.2 ScanTime and Reservedflag Parameters

 New: 4.1.6 Wi-Fi Profile Structure

 New: Appendix II 48~56 indexes including Note and Example

 New: Appendix IV Examples: HID/USB HID – 8400/8700 gets
supported

4.22 Apr. 26, 2012 Part I

 2.11.1 Properites— add Get/Set BklitLevel and SetAuto Bklit for
8200 and modify lcd_backlit configurations

Part II

 Add PCAT - Swiss(German) and Hungarian for 8200

4.21 Mar. 14, 2012 Part I

 Modified: Appendix I ScannerDesTbl Array | Symbology
Parameter Table II - Note: MSI and Code 11 are disabled for 8400
2D scan engine by default.

 Modified: Appendix II Symbology Parameters | Scan Engine,
2D or (Extra) Long Range Laser - Note: MSI and Code 11 are
disabled for 8400 2D scan engine by default.

Part II

 Modified: 4.1.5. “Wi-Fi Hotspot Search Structure” - 8700 gets
supported

 Modified: 4.2.2. “Scanning for Wi-Fi Hotspots” - 8700 gets supported

 Modified: 11.4.7. “Delete Files from FTP Server: FTPDelete” - 8700
gets supported

 Modified: 11.4.8. “Rename Files on FTP Server: FTPRename”
- 8700 gets supported
- Parameter *NewFileName changes to *RemoteNewFile
- Parameter *OldFileName changes to *RemoteOldFile

 Modified: 11.1.1 “Function” - DoFTP supports FTPDelete() and
FTPRename().

4.20 Dec. 12, 2011 Part I

 New: 2.17 “Graphical User Interface” (for 8700 only)

 Modified: 8780 removed from the manual.
Part II

 New: 4.1.5: “Wi-Fi Search Device Structure” for 8200 & 8400.

 New: 4.2.2: “Scannig for Wi-Fi Devices” for 8200 & 8400.

 New functions FTPDelete() and FTPRename() added, updates
involved are:
o Sections 11.0, 11.1.2, 11.2, 11.2.3, 11.3, 11.4 & Index modified.
o Sections 11.4.7 & 11.4.8 newly inserted.

 Modified: 11.1.1. Parameter “via3dot5G” newly added to DoFTP
function.

 Modified: 8780 removed from the manual.

4.10 Jul. 07, 2011 Part I

 Modified: 2.14 Memory — 8700’s updated

Part II

 Modified: 5.1 Bluetooth Profiles Supported — Bluetooth HSP for 8200
removed

 Modified: Appendix IV Examples — Bluetooth HSP (8200 Only)
removed

4.00 Mar. 21, 2011 C Programming Guide split into Part I: Basics and Hardware Control, and
Part II: Data Communications

 Modified: add 8200 support

 Modified: add 8700 support

 Modified: remove 8580/8590

 Part I

 1.3.3 Floating Types — add “About Floating-Point”

 2.1.4 System Information — 8200 only has 8200lib.lib

 2.1.4 System Information — BootloaderVersion() for 8200

 2.1.6 Program Manager — UpdateBootloader() for 8200

 2.1.6 Program Manager — UpdateKernel() for 8200

 2.5 Buzzer — on_beeper() for 8200, set_beeper_vol() allows setting
8200’s speaker mute

 2.10.5 FN Key — Auto Resume mode for 8300 allows re-pressing the
function key to exit the function mode

 2.10.6 ENTER Key — for 8200 only

 2.10.6 ENTER Key — SetMiddleEnter()

Part II

 Add support of Bluetooth HSP and FTP for 8200

 1.3.1 Functions — SetCommType() supports USB Virtual COM_CDC
and Bluetooth HSP for 8200

 9.1.2 USB Virtual COM — add support of USB Virtual COM_CDC for
8200

 10 GPS Functionality — add support of GPS for 8700

 11 FTP Functionality

CONTENTS

RELEASE NOTES .. - 3 -

INTRODUCTION.. 1

COMMUNICATION PORTS .. 3
1.1 Basics ... 4

1.1.1 Communication Parameters ... 4
1.1.2 Receive & Transmit Buffers .. 4

1.2 Flow Control ... 5
1.2.1 RTS/CTS ... 5
1.2.2 XON/XOFF .. 6
1.2.3 Functions .. 7

1.3 Configure Settings ... 8
1.3.1 Functions .. 8

1.4 Open and Close COM .. 10
1.4.1 Functions .. 10

1.5 Read and Write Data .. 12
1.5.1 Functions .. 12

TCP/IP COMMUNICATIONS .. 15
2.1 Native Programming Interface ... 16

2.1.1 Basics .. 16
2.1.2 Functions .. 16

2.2 Socket Programming Interface .. 20
2.2.1 Basics .. 20
2.2.2 Functions .. 22

2.3 Byte Swapping .. 44
2.3.1 Functions .. 44

2.4 Supplemental Functions .. 46

WIRELESS NETWORKING .. 53
3.1 Network Configuration ... 55

3.1.1 Implementation ... 55
3.1.2 Functions .. 55

3.2 Initialization & Termination ... 57
3.2.1 Overview .. 57
3.2.2 Functions .. 59

3.3 Network Status ... 61
3.3.1 Functions .. 61

IEEE 802.11B/G/N ... 63
4.1 Structure ... 64

CipherLab C Programming Part II

4.1.1 NETCONFIG Structure ... 64
4.1.2 WLAN_FLAG Structure .. 67
4.1.3 NETSTATUS Structure... 68
4.1.4 RADIOSTATUS Structure ... 70
4.1.5 Wi-Fi Hotspot Search Structure .. 71
4.1.6 Wi-Fi Profile Structure .. 73

4.2 Functions ... 75
4.2.1 Obsolete Functions ... 75
4.2.2 Scanning for Wi-Fi hotspots ... 78

BLUETOOTH .. 79
5.1 Bluetooth Profiles Supported .. 80
5.2 Structure ... 81

5.2.1 BTCONFIG Structure ... 81
5.2.2 BT_FLAG Structure .. 82
5.2.3 BTSEARCH Structure ... 83
5.2.4 BTSTATUS Structure ... 84

5.3 Functions ... 85
5.3.1 Frequent Device List .. 85
5.3.2 Inquiry .. 86
5.3.3 Pairing ... 87
5.3.4 Useful Function Call ... 88
5.3.5 Obsolete Functions ... 90
5.3.6 ACL functions ... 91

GSM/GPRS .. 95
6.1 Data Format ... 96
6.2 Security ... 99

6.2.1 PIN Procedure .. 99
6.2.2 PUK Procedure ... 100

6.3 GSM Programming Flow .. 101
6.4 Structure ... 102

6.4.1 GSMCONFIG Structure (GSM/GPRS) .. 102
6.4.2 GPRS_FLAG Structure ... 103
6.4.3 GSMSTATUS Structure (GSM/GPRS) .. 104

6.5 Functions ... 105
6.5.1 PIN-related .. 105
6.5.2 GSM Signal Quality (RSSI) ... 107

ACOUSTIC COUPLER .. 109
7.1 Operation Modes .. 110

7.1.1 Modem Mode .. 110
7.1.2 DTMF Mode ... 110

7.2 Functions ... 111

MODEM, ETHERNET & GPRS CONNECTION ... 117
8.1 PPP via Modem Cradle/RS-232 .. 119

CipherLab C Programming Part II

8.1.1 PPPCONFIG Structure ... 120
8.2 Ethernet via Cradle ... 121
8.3 GPRS via Cradle ... 122

8.3.1 GSMCONFIG Structure ... 122
8.3.2 GPRS_FLAG Structure ... 123

USB CONNECTION ... 125
9.1 Overview ... 126

9.1.1 USB HID ... 126
9.1.2 USB Virtual COM ... 126
9.1.3 USB Mass Storage Device ... 126

9.2 Structure ... 127
9.2.1 USBCONFIG Structure .. 127
9.2.2 USB_FLAG Structure ... 127

GPS FUNCTIONALITY .. 129
10.1 Structure .. 130

10.1.1 GPSINFO Structure .. 130
10.2 Functions .. 131

FTP FUNCTIONALITY ... 133
11.1 Using DoFTP Function .. 136

11.1.1 Function ... 136
11.1.2 Log ... 138

11.2 Editing Script File .. 140
11.2.1 Remote File Information ... 143
11.2.2 Local File Information ... 143
11.2.3 Version Control ... 144
11.2.4 Mandatory Flag ... 145
11.2.5 Update Script File ... 145
11.2.6 Update User Program ... 146
11.2.7 Switch to a Different Server .. 146
11.2.8 Wildcards for Remote File Name .. 147

11.3 Structure .. 149
11.3.1 FTP_Settings Structure .. 149

11.4 Advanced FTP Functions ... 150
11.4.1 Connect: FTPOpen ... 151
11.4.2 Disconnect: FTPClose ... 152
11.4.3 Get Directory: FTPDir ... 152
11.4.4 Change Directory: FTPCwd .. 153
11.4.5 Upload File: FTPSend, FTPAppend... 154
11.4.6 Download File: FTPRecv .. 156
11.4.7 Delete Files from FTP Server: FTPDelete .. 157
11.4.8 Rename Files on FTP Server: FTPRename ... 158
11.4.9 UnpackDBF ... 159
11.4.10 Wildcards for Remote File Name (User-Specified Sring) 160

11.5 File Handling ... 161

CipherLab C Programming Part II

11.5.1 DAT Files.. 161
11.5.2 DBF Files .. 162

11.6 SD Card Access .. 163
11.6.1 Directory .. 164
11.6.2 File Name .. 166

CRADLE COMMANDS .. 167

NET PARAMETERS BY INDEX ... 171
NETCONFIG & BTCONFIG ... 171

Wireless Networking .. 171
Bluetooth SPP, FTP, DUN ... 174

GSMCONFIG ... 175
PPPCONFIG... 175
USBCONFIG ... 175

NET STATUS BY INDEX ... 177
Wireless Networking ... 177
Bluetooth SPP, FTP, DUN .. 178
GSM/GPRS .. 178

EXAMPLES ... 179
WLAN Example (802.11b/g) ... 179

WPA Enabled for Security ... 181
Bluetooth Examples .. 182

SPP Master .. 182
SPP Slave ... 183
Wedge Emulator via SPP ... 184
Bluetooth HID .. 186
DUN .. 189
DUN-GPRS ... 190
FTP (8200 Only) .. 191
ACL ... 193

GSM/GPRS Examples ... 194
GPRS .. 194
GSM ... 195

Acoustic Coupler Example .. 197
USB Examples ... 198

USB Virtual COM ... 198
USB HID ... 199
USB Mass Storage Device ... 201

FTP RESPONSE & ERROR CODE .. 203
FTP Response .. 203

Original ... 203
Summarized with Error Code ... 203

Error Code .. 203

CipherLab C Programming Part II

General Error .. 203
Connect Error ... 203
Get Directory Error .. 204
Change Directory Error .. 204
Upload Error ... 204
Download Error ... 204

INDEX .. 205

 1

This C Programming Guide describes the application development process with the “C”
Compiler in details. It starts with the general information about the features and usages
of the development tools, the definition of the functions/statements, as well as some
sample programs.

This programming guide is meant for users to write application programs for CipherLab 8
Series Mobile Computers by using the “C” Compiler. It is organized in chapters giving
outlines as follows:

Part I: Basics and Hardware Control

Chapter 1 “Development Environment” – gives a concise introduction about the “C” Compiler
and the development flow for applications, which provides step-by-step description in
developing application programs for the mobile computers with the “C” Compiler.

Chapter 2 “Mobile-specific Function Library” – presents callable routines that are specific to the
features of the mobile computers. For data communications, refer to Part II.

Chapter 3 “Standard Library Routines” – briefly describes the standard ANSI library routines for
in many ANSI related literatures there can be found more detailed information.

Chapter 4 “Real Time Kernel” – discusses the concepts of the real time kernel, µC/OS. Users can
generate a real time multi-tasking system by using the µC/OS functions.

Part II: Data Communications

Chapter 1 “Communication Ports”

Chapter 2 “TCP/IP Communications”

Chapter 3 “Wireless Networking”

Chapter 4 “IEEE 802.11b/g”

Chapter 5 “Bluetooth”

Chapter 6 “GSM/GPRS”

Chapter 7 “Acoustic Coupler”

Chapter 8 “Modem, Ethernet & GPRS Connection”

Chapter 9 “USB Connection”

Chapter 10 “GPS Functionality”

Chapter 11 “FTP Functionality”

INTRODUCTION

2

CipherLab C Programming Part II

 3

There are at least two communication (COM) ports on each mobile computer, namely
COM1 and COM2. The user has to call SetCommType() to set up the communication
type for the COM ports before using them.

The table below shows the mapping of the communication (COM) ports. Specifying which
type of interface is to be used, the user can use the same routines to open, close, read,
and write data.

Series COM1 COM2 COM3 COM4 COM5

8000 Serial IR, IrDA Acoustic Coupler, Bluetooth N/A N/A N/A

8200 RS-232 Bluetooth N/A N/A USB

8300 RS-232, Serial IR, IrDA Acoustic Coupler, RF, Bluetooth N/A RFID N/A

8400 RS-232 Bluetooth N/A N/A USB

8500 Serial IR, IrDA Bluetooth GSM RFID N/A

8700 RS-232 Bluetooth 3.5G RFID USB

Note: (1) The Bluetooth profiles supported include SPP, DUN, HID, and FTP.
 (2) Bluetooth FTP is supported on 8200 only.
 (3) GSM/GPRS/EDGE or UMTS/HSDPA services are supported on 8700.

IN THIS CHAPTER

1.1 Basics .. 4
1.2 Flow Control ... 5
1.3 Configure Settings ... 8
1.4 Open and Close COM ... 10
1.5 Read and Write Data ... 12

Chapter 1
COMMUNICATION PORTS

4

CipherLab C Programming Part II

1.1 BASICS

1.1.1 COMMUNICATION PARAMETERS

RS-232 Parameters
Baud Rate: 115200, 76800, 57600, 38400, 19200, 9600, 4800, 2400

Data Bits: 7 or 8

Parity: Even, Odd, or None

Stop Bit: 1

Flow Control: RTS/CTS, XON/XOFF, or None

Serial IR Parameters
Baud Rate: 115200, 57600, 38400, 19200, 9600

Data Bits: 8

Parity: Even, Odd, or None

Stop Bit: 1

Flow Control: None

IrDA, USB Parameters

Baud Rate: Ignored, included only for compatibility in coding.

Data Bits: Ignored, included only for compatibility in coding.

Parity: Ignored, included only for compatibility in coding.

Stop Bit: Ignored, included only for compatibility in coding.

Flow Control: Ignored, included only for compatibility in coding.

1.1.2 RECEIVE & TRANSMIT BUFFERS

Receive Buffer

A 256 byte FIFO buffer is allocated for each port. The data successfully received is stored in this
buffer sequentially (if any error occurs, e. g. framing, parity error, etc., the data is simply
discarded). However, if the buffer is already full, the incoming data will be discarded and an
overrun flag is set to indicate this error.

Transmit Buffer

The system does not allocate any transmit buffer. It simply records the pointer of the string to be
sent. The transmission stops when a null character (0x00) is encountered. The application program
must allocate its own transmit buffer and not to modify it during transmission.

 5

 Chapter 1 Communication Ports

1.2 FLOW CONTROL

To avoid data loss, three options of flow control are supported and done by background
routines.

1) None (= Flow control is disabled.)

2) RTS/CTS

3) XON/XOFF

Note: Flow control is only applicable to the direct RS-232 COM port, which is usually
assigned as COM1.

1.2.1 RTS/CTS

RTS now stands for Ready for Receiving instead of Request To Send, while CTS for Clear
To Send. The two signals are used for hardware flow control.

Receive

The RTS signal is used to indicate whether the storage of receive buffer is free or not. If the
receive buffer cannot take more than 5 characters, the RTS signal is de-asserted, and it instructs
the sending device to halt the transmission. When its receive buffer becomes enough for more than
15 characters, the RTS signal becomes asserted again, and it instructs the sending device to
resume transmission. As long as the buffer is sufficient (may be between 5 to 15 characters), the
received data can be stored even though the RTS signal has just been negated.

Transmit

Transmission is allowed only when the CTS signal is asserted. If the CTS signal is negated (=
de-asserted) and later becomes asserted again, the transmission is automatically resumed by
background routines. However, due to the UART design (on-chip temporary transmission buffer),
up to five characters might be sent after the CTS signal is de-asserted.

6

CipherLab C Programming Part II

1.2.2 XON/XOFF

Instead of using RTS/CTS signals, two special characters are used for software flow
control — XON (hex 11) and XOFF (hex 13). XON is used to enable transmission while
XOFF to disable transmission.

Receive

The received characters are examined to see if it is normal data (which will be stored to the receive
buffer) or a flow control code (set/reset transmission flag but not stored). If the receive buffer
cannot take more than 5 characters, an XOFF control code is sent. When the receive buffer
becomes enough for more than 15 characters, an XON control code will be sent so that the
transmission will be resumed. As long as the buffer is sufficient (may be between 5 to 15
characters), the received data can be stored even when in XOFF state.

Transmit

When the port is opened, the transmission is enabled. Then every character received is examined
to see if it is normal data or flow control codes. If an XOFF is received, transmission is halted. It is
resumed later when XON is received. Just like the RTS/CTS control, up to two characters might be
sent after an XOFF is received.

Note: If receiving and transmitting are concurrently in operation, the XON/XOFF control
codes might be inserted into normal transmit data string. When using this method,
make sure that both sides feature the same control methodology; otherwise, dead
lock might happen.

 7

 Chapter 1 Communication Ports

1.2.3 FUNCTIONS

com_cts 8200, 8300, 8400, 8700

Purpose To check the current CTS state on the direct RS-232 port.

Syntax int com_cts (int port);

Parameters int port

1 COM1 for RS-232 port

Example if (com_cts(1) == 0) printf(“COM 1 CTS is negated”);

 else printf(“COM 1 CTS is asserted”);

Return Value If asserted, it returns 1. (= Mark)

Otherwise, it returns 0. (= Space)

com_rts 8200, 8300, 8400, 8700

Purpose To set the RTS signal on the direct RS-232 port.

Syntax void com_rts (int port, int val);

Parameters int port

1 COM1 for RS-232 port

int val

0 RTS signal is negated.

1 RTS signal is asserted.

Example com_rts(1, 1); // COM1 is set as RTS asserted

Return Value None

Remarks This routine controls the RTS signal. However, RTS might be changed by the
background routine according to the status of the receive buffer.

8

CipherLab C Programming Part II

1.3 CONFIGURE SETTINGS

1.3.1 FUNCTIONS

SetCommType

Purpose To set the communication type of a specific COM port.

Syntax int SetCommType (int port, int type);

Parameters int port

COM port to be used. Refer to the COM Port Mapping table.

int type

0 COMM_DIRECT Direct RS-232

1 COMM_DOCKING Via I/O pins of Ethernet, Modem or GPRS
cradle (8200/8400/8700)

2 COMM_IR Via IR transceiver of cradle (8000/8300/8500)

COMM_AUTODETECT See remarks below (8200/8400/8700)

3 COMM_IrDA Standard IrDA (8000/8300/8500)

4 COMM_RF RF, Bluetooth SPP/DUN/HID

RF, Bluetooth ACL (8200)

5 COMM_SMS GSM_SMS (8500/8700)

6 COMM_ACOUSTIC Acoustic (8000/ 8300)

COMM_GSMMODEM GSM_Modem (8500/8700)

7 COMM_USBHID USB HID (8200/8400/8700)

8 COMM_USBVCOM USB Virtual COM (8200/8400/8700)

9 COMM_USBDISK USB Mass Storage (8200/8400/8700)

10 COMM_USBVCOM_C
DC

USB Virtual COM_CDC (8200/8700)

Example SetCommType(1, 2); // set COM1 to IR communication

Return Value If successful, it returns 1.

On error, it returns 0 to indicate the port number or type is invalid.

Remarks This routine needs to be called BEFORE opening a COM port.

 For 8000/8300/8500, pass COMM_IR to the 2nd parameter when it requires
sending cradle commands or establishing a connection via any kind of
cradle, regardless of the actual interface.

 For 8200/8400/8700, the argument passed to the 2nd parameter depends
on the actual interface in use:

(a) Pass COMM_DIRECT when it requires establishing an RS-232
connection, via cable or any kind of cradle.
(b) Pass COMM_USBVCOM when it requires establishing a USB virtual
COM connection, via cable or any kind of cradle.

 9

 Chapter 1 Communication Ports

 (c) Pass COMM_DOCKING when it requires establishing a connection via
Ethernet, Modem or GPRS cradle. (RS-232 or USB virtual COM is not the
desired interface!)
(d) It is fine to pass the unsupported COMM_IR because 8200/8400/8700
can auto detect which condition of the above is met after open_com is
called.

Note that the COM port mapping is different for each model of mobile
computer, and it may not support all the communication types.

See Also GetIOPinStatus, open_com, SetACTone

10

CipherLab C Programming Part II

1.4 OPEN AND CLOSE COM

1.4.1 FUNCTIONS

open_com

Purpose To enable a specific COM port and initialize communications.

Syntax int open_com (int com_port, int setting);

Parameters int com_port

COM port to be used. Refer to the COM Port Mapping table.

int setting

Setting for RS-232

0x00

0x01

0x02

0x03

0x04

0x05

0x06

0x07

BAUD_115200

BAUD_76800Note

BAUD_57600

BAUD_38400

BAUD_19200

BAUD_9600

BAUD_4800Note

BAUD_2400Note

Baud rate (bps)

 Note: These settings are not applicable to Serial IR.

0x00

0x08

DATA_BIT7

DATA_BIT8

Data bits

0x00

0x10

0x30

PARITY_NONE

PARITY_ODD

PARITY_EVEN

Parity

0x00

0x40

HANDSHAKE_NONE

HANDSHAKE_CTS

Flow control method

0xc0 HANDSHAKE_XON

Wedge Emulator Setting for 8000/8300/8500 Series

0x8000 WEDGE_EMULATOR Wedge Emulator setting

Cradle Command Setting for 8000/8300/8500 Series

0x0100 CRADLE_COMMAND Refer to Appendix I for cradle
commands.

 11

 Chapter 1 Communication Ports

 Setting for Bluetooth

0x00

0x03

0x04

0x05

0x09

BT_SERIALPORT_SLAVE

BT_SERIALPORT_MASTER

BT_DIALUP_NETWORKING

BT_HID_DEVICE

BT_ACL_DEVICE

Bluetooth SPP Slave

Bluetooth SPP Master

Bluetooth DUN

Bluetooth HID

CipherLab ACL

Example open_com(1, 0x0b);

 // open COM 1 to 38400,8 data bits, no parity and no handshake

open_com(4); // open COM4 for RFID virtual COM

Return Value If successful, it returns 1.

Otherwise, it returns 0 to indicate the port number is invalid.

Remarks This routine initializes the specific COM port, clears its receive buffer, stops any
ongoing data transmission, resets COM port status, and configures the COM
port according to the settings.

Note that the direct RS-232 port is usually COM1, and the virtual COM port
assigned for Bluetooth serial port profile is COM2. However, only direct RS-232
allows for flow control options.

See Also close_com, SetACTone, SetCommType

close_com

Purpose To terminate communications and disable a specified COM port.

Syntax int close_com (int port);

Parameters Refer to the COM Port Mapping table.

Example close_com(4); // close COM 4

Return Value It always returns 1.

See Also open_com

12

CipherLab C Programming Part II

1.5 READ AND WRITE DATA

1.5.1 FUNCTIONS

clear_com

Purpose To clear the receive buffer of a specific COM port.

Syntax void clear_com (int port);

Parameters Refer to the COM Port Mapping table.

Example clear_com(1); // clear the receive buffer of COM 1

Return Value None

Remarks This routine clears all the data stored in the receive buffer. It can be used to
avoid mis-interpretation when overrun or other error occurs.

See Also com_overrun

com_eot

Purpose To check whether there is any transmission in progress on COM1 or COM2.

(eot = End Of Transmission)

Syntax int com_eot (int port);

Parameters Refer to the COM Port Mapping table.

Example while (!com_eot(1)); // wait till prior transmission completed

write_com(1, “NEXT STRING”);

Return Value If transmission is completed, it returns 1.

Otherwise, it returns 0.

com_overrun

Purpose To check whether overrun error occurs or not.

Syntax int com_overrun (int port);

Parameters Refer to the COM Port Mapping table.

Example if (com_overrun(1) > 0) clear_com(1);

// if overrun, data stored in the buffer is not complete, clear them
all

Return Value If overrun occurs, it returns 1.

Otherwise, it returns 0.

See Also clear_com

 13

 Chapter 1 Communication Ports

read_com

Purpose To read one character from the receive buffer of a specific COM port.

Syntax int read_com (int port, char *c);

Parameters int port

COM port to be used. Refer to the COM Port Mapping table.

char *c

Pointer to the character returned.

Example char c;

if (read_com(1, c))

 printf(“char %c received from COM 1”, *c);

Return Value If successful, it returns 1.

Otherwise, it returns 0 to indicate the buffer is empty.

Remarks This routine reads one byte from the receive buffer and then removes it from
the buffer. However, if the buffer is empty, it will return 0 for no action is
taken.

See Also nwrite_com, write_com

14

CipherLab C Programming Part II

nwrite_com

Purpose To send a number of characters through a specific COM port.

Syntax int nwrite_com (int port, char *s, int count);

Parameters int port

COM port to be used. Refer to the COM Port Mapping table.

char *s

Pointer to the string being sent out.

int count

The number of characters to be sent.

Example char s[]={“Hello\n”};

nwrite_com(1, s, 2); // send the characters “He” through COM1

Return Value If successful, it returns the character count. (For Bluetooth SPP, it returns 1.)

Otherwise, it returns 0.

Remarks This routine sends the characters of a string one by one until the specified
number of characters are sent out.

write_com

Purpose To send a null-terminated string through a specific COM port.

Syntax int write_com (int port, char *s);

Parameters int port

COM port to be used. Refer to the COM Port Mapping table.

char *s

Pointer to the string being sent out.

Example char s[]={“Hello\n”};

write_com(1, s); // send the string “Hello\n” through COM1

Return Value If successful, it returns the character count.

Otherwise, it returns 0.

Remarks This routine sends a string through a specific COM port. If any prior
transmission is still in progress, it will be terminated and then the current
transmission resumes. The characters of a string will be transmitted one by one
until a NULL character is met. Note that a null string can be used to terminate
the prior transmission.

 15

There are at least two communication (COM) ports on each mobile computer, namely
COM1 and COM2. The user has to call SetCommType() to set up the communication
type for the COM ports before using them.

IN THIS CHAPTER

2.1 Native Programming Interface 16
2.2 Socket Programming Interface 20
2.3 Byte Swapping ... 44
2.4 Supplemental Functions ... 46

Chapter 2
TCP/IP COMMUNICATIONS

16

CipherLab C Programming Part II

2.1 NATIVE PROGRAMMING INTERFACE

2.1.1 BASICS

 Nopen() is used to establish connections. After the connection is successfully
established, Nopen() will return a connection number, which is used to identify this
particular connection in subsequent calls to other TCP/IP stack routines.

 Nclose() is used to close a specific connection.
 Nread() and Nwrite() are used to send and receive data on the network.

Note: Before reading and writing to the remote host, a connection must be established
or opened.

2.1.2 FUNCTIONS

Nclose

Purpose To close a connection.

Syntax int Nclose (int conno);

Parameters int conno

The connection to be closed. This connection number is a return value of
Nopen().

Example Nclose(conno);

Return Value If successful, it returns 0.

On error, it returns a negative value to indicate a specific error condition.

See Also Nopen, socket_fin

 17

 Chapter 2 TCP/IP COMmunications

Nopen

Purpose To open a connection.

Syntax int Nopen (const char *remote_ip, const char *proto, int lp, int rp, int
flags);

Parameters const char *remote_ip

It can be one of these two forms:

 “n1.n2.n3.n4” for remote host IP;

 “*” for any host, passive open.

const char *proto

Protocol stack to be used, “TCP/IP” or “UDP/IP”.

int lp

Local port number.

 If this is an active open (client), the local port is often an ephemeral port,
and a suitable random value can be obtained using Nportno() or set lp to
0.

int rp

Remote port number.

 For a passive open (server), this value should be specified as 0, and any
remote port will be accepted for the connection.

int flags

0 Normally, its value is set to 0.

S_NOCON No connection for UDP.

S_NOWA Non-blocking open

IPADDR Remote_ip is binary (4 bytes)

Example /* Passive Open (Server) */

conno = Nopen(“*”,“TCP/IP”, 2000, 0, 0);

/* Active Open (Client) */

char remote_ip[] = “230.145.22.4”;

if ((conno = Nopen(remote_ip, “TCP/IP”, Nportno(), 2000, 0)) < 0)

printf(“Fail to connect to Host: %s\r\n”, remote_ip);

Return Value If successful, it returns the connection number. This is the handle for further
communication on the connection.

On error, it returns a negative value to indicate a specific error condition.

Remarks This routine is used for both active and passive opens. The behavior is
determined by the parameters supplied to the function.

 A passive open will wait indefinitely.

 An active open for TCP will return when the connection has been made, but
it times out in a couple of minutes if there is no answer.

 To check whether or not the connection has established, use
socket_isopen().

See Also Nclose, Nportno, socket_ipaddr, socket_isopen

18

CipherLab C Programming Part II

Nread

Purpose To read a message from a connection.

Syntax int Nread (int conno, char *buff, int len);

Parameters int conno

The connection to be accessed. This connection number is a return value of
Nopen().

char *buff

Pointer to a receive buffer.

int len

Maximum number of bytes to read; normally equals to the size of the buffer.

Example if (socket_hasdata(conno) > 0)

 Nread(conno, buf, sizeof(buf));

Return Value If successful, it returns the number of bytes read.

Otherwise, it returns 0 to indicate the connection is closed by the remote end.

On error, it returns a negative value to indicate a specific error condition.

Remarks This routine reads a number of bytes (len) from a connection (conno) into a
specified buffer (buff).

 In blocking mode, this function will block until information is available to be
read, or until a timeout occurs. The timeout can be adjusted using
socket_rxtout().

 The application can avoid this blocking behavior by using socket_hasdata to
make sure there is data available before calling Nread().

 The protocol stack will try to compact all of the data receiving from the
remote side. This means the data obtained from Nread() maybe comes
from different packets.

See Also Nwrite, socket_hasdata, socket_rxtout

 19

 Chapter 2 TCP/IP COMmunications

Nwrite

Purpose To write a message to a connection.

Syntax int Nwrite (int conno, char *buff, int len);

Parameters int conno

The connection to be accessed. This connection number is a return value of
Nopen().

char *buff

Pointer to a send buffer.

int len

Maximum number of bytes to write.

Example if (socket_cansend(conno, strlen(buf)))

 Nwrite(conno, buf, strlen(buf));

Return Value If successful, it returns the number of bytes written.

On error, it returns a negative value to indicate a specific error condition.

Remarks This routine writes a number of bytes (len) from a specified buffer (buff) to a
connection (conno).

 The protocol stack will keep the data and send them in background.
Normally, this routine will return immediately. However, it will take 1 to 8
seconds to send the data in the following cases:

 Case 1 –

Case 2 -

In TCP, four packets have been sent, but never get any ACK.

The protocol stack will try to resend the packets until it times
out (after 8 seconds). The application can avoid this situation by
using socket_cansend to make sure the transmission is
available before calling Nwrite().

In UDP, the protocol stack does not get MAC ID of the remote
side. It will take 1 second to ask the remote side for MAC ID by
ARP.

See Also Nread, socket_cansend

20

CipherLab C Programming Part II

2.2 SOCKET PROGRAMMING INTERFACE

2.2.1 BASICS

Include File
#include <errno.h>

This header file, “errno.h”, contains the error code definitions. This file should normally be placed
under the “include” directory of the C compiler - C:\C_Compiler\INCLUDE\

Note: For relevant structures, please refer to the header file for mobile-specific library.

Connection-oriented Protocol (TCP)

For a connection-oriented socket, such as SOCK_STREAM, it provides full-duplex connection and
must be in a connected state before any data can be sent or received on it. A connection to another
socket is created with connect(). Once connected, data can be transferred using send() and
recv(). When a session has been completed, closesocket() must be performed.

 21

 Chapter 2 TCP/IP COMmunications

Connectionless Protocol (UDP)

For a connectionless, message-oriented socket, datagrams can be sent to and received from a
specific connected peer using sendto() and recvfrom() respectively.

22

CipherLab C Programming Part II

2.2.2 FUNCTIONS

accept

Purpose To accept a connection on a socket.

Syntax int accept (SOCKET s, struct sockaddr *name, int *namelen);

Parameters SOCKET s

Descriptor identifying a socket in a listening state.

struct sockaddr *name

Pointer to a sockaddr structure, receiving the remote IP address and port
number.

int *namelen

Pointer to an integer containing the length of name.

Example SOCKET listen_socket, remote_socket;

struct sockaddr_in local_name, remote_name;

int size_of_name;

listen_socket = socket(PF_INET, SOCK_STREAM, TCP);

if (listen_socket < 0) {

 printf(“SOCKET allocation failed”);

}

memset(&local_name, 0, sizeof(local_name));

local_name.sin_family = AF_INET;

local_name.sin_port = htons(3000);

if (bind(listen_socket, (struct sockaddr*)&local_name,

sizeof(local_name)) < 0) {

 printf(“Error in Binding on socket: %d”, listen_socket);

.....................

}

if (listen(listen_socket, 1)) {

 printf(“Error in Listening on socket: %d”, listen_socket);

}

size_of_name = sizeof(remote_name);

remote_socket =

accept(listen_socket, (struct sockaddr*)&remote_name, &size_of_name);

if (remote_socket < 0) {

 printf(“Error in accept on socket: %d”, listen_socket);

 …..................

}

 23

 Chapter 2 TCP/IP COMmunications

 send(remote_socket, “Hello”, strlen (“Hello”),0);

Return Value If successful, it returns a non-negative integer (≥ 0) as a descriptor for the
accepted socket.

On error, it returns -1. The global variable errno is set to indicate the error
condition encountered.

Remarks This routine is used by a server application to perform a passive open,
permitting a connection request from client.

 name is a result parameter that is filled in with the address of the
connecting entity, as known to the communications layer. The exact format
of the parameter is determined by the address family in which the
communication is occurring.

 namelen is a value-result parameter; it initially contains the amount of
space pointed to by name; on return, it will contain the actual length, in
bytes, of the address returned. Name is truncated if the buffer provided is
too small.

The socket will remain in the listening state until a client establishes a
connection with the port offered by the server.

 The connection is actually made with the socket that is returned by this
routine.

The original socket remains in the listening state, and can be used in a
subsequent call to this routine to provide additional connections.

Note that this is a blocking function. This routine will not return unless there is
error or a new connection is established. If normal program flow is mandatory
for the application or the application is going to accept multiple connection
requests. This routine must be called in a separate task.

See Also connect, listen, select

24

CipherLab C Programming Part II

bind

Purpose To bind a name to a newly created socket.

Syntax int bind (SOCKET s, struct sockaddr *name, int namelen);

Parameters SOCKET s

Descriptor identifying an unbound socket.

struct sockaddr *name

Pointer to a sockaddr structure containing the local IP address and listening
port to be bounded.

int namelen

Length of name.

Example SOCKET s;

struct sockaddr_in name;

s = socket(PF_INET, SOCK_STREAM, TCP);

if (s < 0) {

 printf(“SOCKET allocation failed”);

}

memset(&name, 0, sizeof(name));

name.sin_family = AF_INET;

name.sin_port = htons(3000);

if (bind(s, (struct sockaddr*)&name, sizeof(name)) < 0) {

printf(“Error in Binding on socket: %d”, s);

}

Return Value If successful, it returns 0.

On error, it returns -1. The global variable errno is set to indicate the error
condition encountered.

Remarks This routine binds the local IP address and listening port number information to
the socket specified.

 For connection-oriented sockets (passive open), this routine must be called
before calling listen() and accept().

 The socket specified must be a valid descriptor returned from a previous
call to the socket() routine.

 The local IP address specified can be left out as 0. The application can use
getsockname() to learn the address and port that has been assigned to it.

 If it is other than 0, this routine will verify this information against the
actual local IP address of the local device.

See Also connect, getsockname, listen, socket

 25

 Chapter 2 TCP/IP COMmunications

closesocket

Purpose To close a socket and release the connection block.

Syntax int closesocket (SOCKET s);

Parameters SOCKET s

Descriptor identifying a socket.

Example SOCKET s;

..............

if (closesocket(s) < 0) {

 printf(“closesocket fails on socket: %d”, s);

}

Return Value If successful, it returns 0.

On error, it returns -1. The global variable errno is set to indicate the error
condition encountered.

See Also shutdown, socket

26

CipherLab C Programming Part II

connect

Purpose To initiate a connection on a socket.

Syntax int connect (SOCKET s, struct sockaddr *name, int namelen);

Parameters SOCKET s

Descriptor identifying a socket.

struct sockaddr *name

Pointer to a sockaddr structure containing the remote IP address and port
number.

int namelen

Length of name.

Example SOCKET s;

struct sockaddr_in name;

struct hostent *phostent;

s = socket(PF_INET, SOCK_STREAM, TCP);

if (s < 0) {

 printf(“SOCKET allocation failed”);

...................

}

memset(&name, 0, &sizeof(name));

name.sin_family = AF_INET;

name.sin_port = htons(3000);

phostent = gethostbyname(“server1.cipherlab.com.tw”);

if (!phostent) {

 printf(“Can not get IP from DNS server”);

}

memcpy(&name.sin_addr, phostent->h_addr_list[0], 4);

if (connect(s, (struct sockaddr*)&name, sizeof(name)) < 0) {

printf(“Error in Establishing connection”);

}

Return Value If successful, it returns 0.

On error, it returns -1. The global variable errno is set to indicate the error
condition encountered.

Remarks This routine establishes a connection to a specified socket. It performs an
active open (client mode), allowing a client application to establish a
connection with a remote server. When it completes successfully, the socket is
ready to send/recv data.

See Also accept, getpeername, getsockname, listen, select, socket

 27

 Chapter 2 TCP/IP COMmunications

fcntlsocket

Purpose To provide file control over descriptors.

Syntax int fcntlsocket (int fildes, int cmd, int arg);

Parameters int fildes

Descriptor to be operated on by cmd as described below.

int cmd

O_NDELAY Non-blocking

FNDELAY O_NDELAY Synonym

F_GETFL Get descriptor status flags. (arg is ignored)

F_SETFL Set descriptor status flags to arg.

int arg

Depending on the value of cmd, it can take an additional third argument arg.

Example (...)

Return Value If successful, it returns a non-negative value depending on cmd.

On error, it returns -1. The global variable errno is set to indicate the error
condition encountered.

28

CipherLab C Programming Part II

gethostbyname

Purpose To get the IP address of the specified host from DNS server.

Syntax struct hostent *gethostbname (const char *hnp);

Parameters const char *hnp

Pointer to a buffer containing a null-terminated hostname.

Example SOCKET s;

struct sockaddr_in name;

struct hostent *phostent;

s = socket(PF_INET, SOCK_STREAM, TCP);

if (s < 0) {

 printf(“SOCKET allocation failed”);

}

memset(&name, 0, sizeof(name));

name.sin_family = AF_INET;

name.sin_port = htons(3000);

phostent = gethostbyname(“server1.cipherlab.com.tw”);

if (!phostent) {

 printf(“Can not get IP from DNS server”);

}

memcpy(&name.sin_addr, phostent->h_addr_list[0], 4);

if (connect(s, (struct sockaddr*)&name, sizeof(name)) < 0)

{

printf(“Error in Establishing connection”);

}

Return Value If successful, it returns a pointer.

On error, it returns a NULL pointer.

Remarks This routine searches for information by the given hostname specified by the
character-string parameter hnp.

It then returns a pointer to a struct hostent structure describing an internet
host referenced by name.

 The IP address of DNS server must be specified when calling
SetNetConfig(). Or, it can be automatically retrieved from DHCP server, if
DhcpEnable is set.

See Also DNS_resolver

 29

 Chapter 2 TCP/IP COMmunications

getpeername

Purpose To get name of a connected peer.

Syntax int getpeername (SOCKET s, struct sockaddr *name, int *namelen);

Parameters SOCKET s

Descriptor identifying a socket.

struct sockaddr *name

Pointer to a sockaddr structure receiving the remote IP address and port
number.

int *namelen

Pointer to an integer containing the length of name.

Example SOCKET s;

struct sockaddr_in remote_name;

int size_of_name;

........................

size_of_name = sizeof(remote_name);

if (getpeername(s, (struct sockaddr*)&remote_name, &size_of_name) < 0)
{

 printf(“Can not get remote name info”);

}

Return Value If successful, it returns 0.

On error, it returns -1. The global variable errno is set to indicate the error
condition encountered.

Remarks This routine returns the name of the peer connected to socket s. It only can be
used on a connected socket.

 name is a result parameter that is filled in with the address of the
connecting entity, as known to the communications layer. The exact format
of the parameter is determined by the address family in which the
communication is occurring.

 namelen is a value-result parameter; it initially contains the amount of
space pointed to by name; on return, it will contain the actual length, in
bytes, of the address returned. name is truncated if the buffer provided is
too small.

See Also connect, getsockname

30

CipherLab C Programming Part II

getsockname

Purpose To get socket name.

Syntax int getsockname (SOCKET s, struct sockaddr *name, int *namelen);

Parameters SOCKET s

Descriptor identifying a socket.

struct sockaddr *name

Pointer to a sockaddr structure receiving the local IP address and port
number.

int *namelen

Pointer to an integer containing the length of name.

Example SOCKET s;

struct sockaddr_in local_name;

int size_of_name;

........................

size_of_name = sizeof(local_name);

if (getsockname(s, (struct sockaddr*)&local_name, &size_of_name) < 0)
{

printf(“Can not get local name info”);

}

Return Value If successful, it returns 0.

On error, it returns -1. The global variable errno is set to indicate the error
condition encountered.

Remarks This routine returns the current name for bound or connected socket s. It is
especially useful when a connect() call has been made without doing a bind
first.

 name is a result parameter that is filled in with the address of the
connecting entity, as known to the communications layer. The exact format
of the parameter is determined by the address family in which the
communication is occurring.

 namelen is a value-result parameter; it initially contains the amount of
space pointed to by name; on return, it will contain the actual length, in
bytes, of the address returned. Name is truncated if the buffer provided is
too small.

See Also bind, connect, getpeername

 31

 Chapter 2 TCP/IP COMmunications

getsockopt

Purpose To get options on a socket.

Syntax int getsockopt (SOCKET s, int level, int optname, char *optval, int
*optlen);

Parameters SOCKET s

Descriptor identifying a socket.

int level

Level at which the option resides: SOL_SOCKET, IPPROTO_TCP, or
IPPROTO_IP

int optname

Socket option for which the value is to be retrieved.

For example, the following options are recognized –

 SOL_SOCKET

SO_DEBUG Enable recording of debugging information

SO_REUSEADDR Enable local address reuse

SO_KEEPALIVE Enable sending keep-alives

SO_DONTROUTE Enable routing bypass for outgoing messages

SO_BROADCAST Enable permission to transmit broadcast
messages

SO_BINDTODEVICE (…)

SO_LINGER Return the current Linger option

SO_OOBINLINE Enable reception of out-of-band data in band

SO_SNDBUF Get buffer size for sends

SO_RCVBUF Get buffer size for receives

SO_ERROR Get and clear error on the socket

SO_TYPE Get the type of the socket

 IPPROTO_TCP

TCP_MAXSEG Get TCP maximum-segment size

TCP_NODELAY Disable the Nagle algorithm for send coalescing

 IPPROTO_IP

IP_OPTIONS Get IP header options

char *optval

Pointer to a buffer where the value for the requested option is to be returned.

int *optlen

Pointer to an integer containing the size of the buffer, in bytes. On return, it
will be set to the size of the value returned.

32

CipherLab C Programming Part II

Example (...)

Return Value If successful, it returns 0.

On error, it returns -1. The global variable errno is set to indicate the error
condition encountered.

Remarks This routine retrieves the current value for a socket option associated with a
socket of any type, in any state, and stores the result in optval. Although
options may exist at multiple protocol levels, they are always present at the
uppermost socket level. Options affect socket operations, such as the packet
routing and OOB data transfer.

 To manipulate options at the socket level, level is specified as
SOL_SOCKET.

 To manipulate options at any other level, the protocol number of the
appropriate protocol controlling the option is supplied.

See Also setsockopt

 33

 Chapter 2 TCP/IP COMmunications

inet_addr

Purpose To convert an IP address string in standard dot notation to a network byte
order unsigned long integer.

Syntax unsigned long inet_addr (char *dotted);

Parameters char *dotted

An IP address in standard dot notation to be converted.

Example struct sockaddr_in name;

name.sin_addr .s_addr = inet_addr((char *)“192.168.1.1”);

Return Value It returns a value of conversion.

See Also inet_ntoa

inet_ntoa

Purpose To convert an IP address stored in in_addr structure to a string in standard dot
notation.

Syntax char *inet_ntoa (struct in_addr addr);

Parameters struct in_addr addr

An in_addr structure containing the IP address to be converted.

Example struct sockaddr_in name;

char ip_addr[16];

strcpy(ip_addr, inet_ntoa(name.sin_addr));

printf(“Remote IP: %s”, ip_addr);

Return Value It returns a pointer to the string.

See Also inet_addr

ioctlsocket

Purpose To provide controls on the I/O mode of a socket.

Syntax int ioctlsocket (int fildes, int request, …);

Parameters int fildes

Descriptor to open file.

Example (...)

Return Value If successful, it returns 0.

On error, it returns -1. The global variable errno is set to indicate the error
condition encountered.

Remarks This routine manipulates the underlying device parameters of special files.

 In particular, many operating characteristics of character special files may
be controlled with ioctlsocket() requests.

See Also fcntlsocket

34

CipherLab C Programming Part II

listen

Purpose To listen for connections on a socket.

Syntax int listen (SOCKET s, int backlog);

Parameters SOCKET s

Descriptor identifying a bound, unconnected socket.

int backlog

Number of connections that will be held in a queue waiting to be accepted.

Example SOCKET s;

struct sockaddr_in name;

s = socket(PF_INET, SOCK_STREAM, TCP);

if (s < 0) {

 printf(“SOCKET allocation failed”);

}

memset(&name, 0, sizeof(name));

name.sin_family = AF_INET;

name.sin_port = htons(3000);

if (bind(s, (struct sockaddr*)&name, sizeof(name)) < 0) {

 printf(“Error in Binding on socket: %d”, s);

}

if (listen(s, l) {

 printf(“Error in Listening on socket: %d”, s);

...................

}

Return Value If successful, it returns 0.

On error, it returns -1. The global variable errno is set to indicate the error
condition encountered.

Remarks This routine is used with connection-oriented socket type SOCK_STREAM; it is
part of the sequence of routines that are called to perform a passive open.
listen() puts the bound socket in a state in which it is listening up to a backlog
number of connection requests from clients.

 The socket is put into passive open where incoming connection requests
are acknowledged and queued pending acceptance by the accept() process.

 This routine is typically used by servers that can have more than one
connection request at a time. If a connection request arrives and the queue
is full, the client will receive an error.

 If there are no available socket descriptors, listen() attempts to continue to
function. When descriptors become available, a later call to listen() or
accept() will refill the queue to the current or most recent backlog, if
possible, and resume listening for incoming connections.

 35

 Chapter 2 TCP/IP COMmunications

 If listen() is called on an already listening socket, it will return success
without changing the backlog. Setting the backlog to 0 in a subsequent call
to listen() on a listening socket is not considered a proper reset, especially
if there are connections on the socket.

See Also accept, connect

36

CipherLab C Programming Part II

recv

Purpose To receive data from a connected or bound socket.

Syntax int recv (SOCKET s, char *buf, int len, int flags);

Parameters SOCKET s

Descriptor identifying a connected socket.

char *buf

Pointer to a buffer where data is received.

int len

Maximum number of bytes to be received.

int flags

MSG_OOB Receive urgent data (out-of-bound data).

MSG_PEEK Receive data but do not remove it from the input
queue, allowing it to be read again on
subsequent calls (peek at incoming data).

Example SOCKET s;

char buf[1024];

int len;

...............

if (socket_hasdata(s)) {

len = recv(s, buf, sizeof(buf), 0);

if (len < 0) {

 printf(“recv fails on socket: %d”, s);

}

}

Return Value If successful, it returns a non-negative integer (≥ 0) indicating the number of
bytes received and stored into buffer.

On error, it returns -1. The global variable errno is set to indicate the error
condition encountered.

Remarks This routine reads incoming data from a specified buffer (buf) on a connected
socket.

 select() may be used to determine when more data arrives.

 The application can avoid this blocking behavior by using socket_hasdata()
to make sure there is data available before calling recv().

See Also recvfrom, select, send, socket_hasdata

 37

 Chapter 2 TCP/IP COMmunications

recvfrom

Purpose To receive data from a socket and stores the source address.

Syntax int recvfrom (SOCKET s, char *buf, int len, int flags, struct sockaddr
*from, int *fromlen);

Parameters SOCKET s

Descriptor identifying a connected socket.

char *buf

Pointer to a buffer where data is received.

int len

Maximum number of bytes to be received.

int flags

MSG_OOB Receive urgent data (out-of-bound data).

MSG_PEEK Receive data but do not remove it from the input
queue, allowing it to be read again on
subsequent calls (peek at incoming data).

struct sockaddr *from

Pointer to sockaddr structure that will hold the source address upon return.

int *fromlen

Pointer to an integer containing the length of from.

Example (...)

Return Value If successful, it returns a non-negative integer (≥ 0) indicating the number of
bytes received and stored into buffer.

On error, it returns -1. The global variable errno is set to indicate the error
condition encountered.

Remarks This routine reads incoming data from a specified buffer (buf), and captures
the address from which the data was sent. It is typically used on a
connectionless socket.

 If from is not a null pointer, the source address of data is filled in.

 fromlen is a value-result argument, initialized to the size of the buffer
associated with from, and modified on return to indicate the actual size of
the address stored there.

 select() may be used to determine when more data arrives.

 The application can avoid this blocking behavior by using socket_hasdata()
to make sure there is data available before calling recvfrom().

See Also recv, select, send, socket_hasdata

38

CipherLab C Programming Part II

select

Purpose To synchronize I/O multiplexing.

Syntax int select (int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds,
struct timeval *timeout);

Parameters int nfds

Descriptor identifying a set of sockets to be checked - from 0 through nfds
-1 in the descriptor sets are examined.

fd_set *readfds, *writefds, *exceptfds

Any of readfds, writefds, and exceptfds may be given as null pointers if no
descriptors are of interest.

struct timeval *timeout

Pointer to a zero-valued timeval structure, specifies the maximum interval to
wait for the selection to complete.

 System activity can lengthen the interval by an indeterminate amount.

 If it is a null pointer, the select blocks indefinitely.

Example (...)

Return Value If successful, it returns the number of ready descriptors.

If the time limit expires, it returns 0.

On error, it returns -1. The global variable errno is set to indicate the error
condition encountered.

Remarks This routine examines the I/O descriptor sets whose addresses are passed in
readfds, writefds, and exceptfds to see if some of their descriptors are ready
for reading, are ready for writing, or have an exceptional condition pending,
respectively.

 The only exceptional condition detectable is out-of-band data received on a
socket.

 On return, this routine replaces the given descriptor sets with subsets
consisting of those descriptors that are ready for the requested operation.
It returns the total number of ready descriptors in all the sets.

The descriptor sets are stored as bit fields in arrays of integers.

 The following are provided for manipulating such descriptor sets. Their
behavior is undefined if a descriptor value is less than zero or greater than
or equal to FD_SETSIZE, which is normally at least equal to the maximum
number of descriptors supported by the system.

FD_SETSIZE 8 The maximum number of descriptors is 8.

FD_SET (n, p) ((p) -> fds_bits [(n) >>3] |= (1 << ((n) & 7)))

FD_CLR (n, p) ((p) -> fds_bits [(n) >>3] &= ~(1 << ((n) & 7)))

FD_ISSET (n, p) ((p) -> fds_bits [(n) >>3] & (1 << ((n) & 7)))

FD_ZERO (p) memset ((void *) (p), 0, sizeof (*(p)))

See Also accept, connect, recv, send

 39

 Chapter 2 TCP/IP COMmunications

send

Purpose To send data to a connected socket.

Syntax int send (SOCKET s, char *buf, int len, int flags);

Parameters SOCKET s

Descriptor identifying a connected socket.

char *buf

Pointer to a buffer where data is to be sent.

int len

Maximum number of bytes to be sent.

int flags

MSG_OOB Send urgent data (out-of-bound data).

MSG_DONTROUTE Send data using direct interface (bypass
routing).

Example SOCKET s;

char buf[1024];

int len, tlen;

...................

len = strlen(buf);

tlen = send(s, buf, len, 0);

if (tlen < 0) {

 printf(“send fails on socket: %d”, s);

}

Return Value If successful, it returns a non-negative integer (≥ 0) indicating the number of
bytes sent.

On error, it returns -1. The global variable errno is set to indicate the error
condition encountered.

Remarks This routine writes outgoing data to a specified send buffer (buf) on a
connected socket.

 The whole data may not be sent at one time. Check the return value in
case the send buffer overflows.

 The application can avoid this blocking behavior by using socket_cansend()
to make sure there is data available before calling send().

See Also recv, sendto, socket_cansend

40

CipherLab C Programming Part II

sendto

Purpose To send data to a connected socket.

Syntax int sendto (SOCKET s, char *buf, int len, int flags, struct sockaddr *to, int
tolen);

Parameters SOCKET s

Descriptor identifying a connected socket.

char *buf

Pointer to a buffer where data is to be sent.

int len

Maximum number of bytes to be sent.

int flags

MSG_OOB Send urgent data (out-of-bound data).

MSG_DONTROUTE Send data using direct interface (bypass
routing).

struct sockaddr *to

Pointer to sockaddr structure containing the address of the target socket.

int tolen

Length of address indicated by to.

Example (...)

Return Value If successful, it returns a non-negative integer (≥ 0) indicating the number of
bytes sent.

On error, it returns -1. The global variable errno is set to indicate the error
condition encountered.

Remarks This routine writes outgoing data to a specified send buffer (buf) on a
connected socket.

 The address of the targe is given by to with tolen specifying its size. The
length of the message is given by len. It is typically used on a
connectionless socket.

 The whole data may not be sent at one time. Check the return value in
case the send buffer overflows.

 The application can avoid this blocking behavior by using socket_cansend()
to make sure there is data available before calling send().

See Also recvfrom, sendto, socket_cansend

 41

 Chapter 2 TCP/IP COMmunications

setsockopt

Purpose To set options on a socket.

Syntax int setsockopt (SOCKET s, int level, int optname, char *optval, int
*optlen);

Parameters SOCKET s

Descriptor identifying a socket.

int level

Level at which the option resides: SOL_SOCKET, IPPROTO_TCP, or
IPPROTO_IP

int optname

Socket option for which the value is to be set.

For example, the following options are recognized -

 SOL_SOCKET

SO_DEBUG Enable recording of debugging information

SO_REUSEADDR Enable local address reuse

SO_KEEPALIVE Enable sending keep-alives

SO_DONTROUTE Enable routing bypass for outgoing messages

SO_BROADCAST Enable permission to transmit broadcast
messages

SO_BINDTODEVICE (...)

SO_LINGER Linger on close if unsent data is present

SO_OOBINLINE Enable reception of out-of-band data in band

SO_SNDBUF Set buffer size for sends

SO_RCVBUF Set buffer size for receives

 IPPROTO_TCP

TCP_NODELAY Disable the Nagle algorithm for send coalescing

 IPPROTO_IP

IP_OPTIONS Set IP header options

char *optval

Pointer to a buffer where the value for the option is specified.

int *optlen

Pointer to an integer containing the size of the buffer, in bytes.

Example (...)

Return Value If successful, it returns 0.

On error, it returns -1. The global variable errno is set to indicate the error
condition encountered.

42

CipherLab C Programming Part II

Remarks This routine sets the current value for a socket option associated with a socket
of any type, in any state. Although options may exist at multiple protocol
levels, they are always present at the uppermost socket level. Options affect
socket operations, such as the packet routing and OOB data transfer.

When manipulating socket options, the level at which the option resides and
the name of the option must be specified.

 To manipulate options at the socket level, level is specified as
SOL_SOCKET.

 To manipulate options at any other level, the protocol number of the
appropriate protocol controlling the option is supplied.

See Also getsockopt

shutdown

Purpose To shut down part of a TCP connection.

Syntax int shutdown (SOCKET s, int how);

Parameters SOCKET s

Descriptor identifying a socket.

int how

0 Shut down receive data path

1 Shut down send data path and send FIN (final)

2 Shut down both receive and send data path

Example SOCKET s;

...................

if (shutdown(s, 2) < 0) {

 printf(“shutdown fails on socket: %d”, s);

}

Return Value If successful, it returns 0.

On error, it returns -1. The global variable errno is set to indicate the error
condition encountered.

Remarks This routine shuts down part of a previously established TCP connection.

 Even if both receive and send data path are shut down, closesocket() must
be called to actually close the socket.

See Also closesocket

 43

 Chapter 2 TCP/IP COMmunications

socket

Purpose To create a socket that is bound to a specific service provider.

Syntax SOCKET socket (int domain, int type, int protocol);

Parameters int domain

Protocol family; this should always be PF_INET or AF_INET.

int type, protocol

Depending on the socket type specified, the protocol to be used can be TCP or
UDP.

Type Protocol

SOCK_STREAM 6 (TCP) Stream socket

 0 Do not check protocol

SOCK_DGRAM 5 (UDP) Datagram socket

 0 Do not check protocol

Example SOCKET s;

s = socket(PF_INET, SOCK_STREAM, 6);

if (s < 0) {

printf(“SOCKET allocation fails”);

................

}

Return Value If successful, it returns a non-negative integer (≥ 0) as a descriptor referencing
the socket.

On error, it returns -1. The global variable errno is set to indicate the error
condition encountered.

Remarks This routine creates an endpoint for communication and returns a descriptor.

 domain specifies a communications domain within which communication
will take place; this selects the protocol family which should be used.

 The socket has the indicated type, which specifies the semantics of
communication.

 protocol specifies a particular protocol to be used with the socket. Normally
only a single protocol exists to support a particular socket type within a
given protocol family. However, it is possible that many protocols may
exist, in which case a particular protocol must be specified in this manner.
The protocol number to use is particular to the “communication domain” in
which communication is to take place.

See Also accept, bind, closesocket, connect, getpeername, getsockname, getsockopt,
ioctlsocket, listen, recv, recvfrom, select, send, sendto, setsockopt, shutdown

44

CipherLab C Programming Part II

2.3 BYTE SWAPPING

2.3.1 FUNCTIONS

htonl

Purpose To convert an unsigned long integer from host byte order to network byte
order.

Syntax unsigned long htonl (unsigned long val);

Parameters unsigned long val

An unsigned long integer to be converted.

Example (...)

Return Value It returns the value of conversion.

See Also ntohl

htons

Purpose To convert an unsigned (short) integer from host byte order to network byte
order.

Syntax unsigned htons (unsigned val);

Parameters unsigned val

An unsigned integer to be converted.

Example struct sockaddr_in name;

s = socket(PF_INET, SOCK_STREAM, TCP);

if (s < 0) {

 printf(“SOCKET allocation failed”);

}

memset(&name, 0, sizeof(name));

name.sin_family = AF_INET;

name.sin_port = htons(3000);

Return Value It returns the value of conversion.

See Also ntohs

ntohl

Purpose To convert an unsigned long integer from network byte order to host byte
order.

Syntax unsigned long ntohl (unsigned long val);

Parameters unsigned long val

An unsigned long integer to be converted.

Example (...)

Return Value It returns the value of conversion.

See Also htonl

 45

 Chapter 2 TCP/IP COMmunications

ntohs

Purpose To convert an unsigned (short) integer from network byte order to host byte
order.

Syntax unsigned ntohs (unsigned val);

Parameters unsigned val

An unsigned integer to be converted.

Example struct sockaddr_in name;

int port;

.......................

port = ntohs(name.sin_port);

printf(“Remote Port: %d”, port);

Return Value It returns the value of conversion.

See Also htons

46

CipherLab C Programming Part II

2.4 SUPPLEMENTAL FUNCTIONS

Other useful functions for obtaining additional information or setting control for a
connection are described below.

DNS_resolver

Purpose To get the remote IP address by remote name.

Syntax int DNS_resolver (const char *remote_host, unsigned char *remote_ip);

Parameters const char *remote_host

Pointer to a buffer where the remote hostname is stored.

unsigned char *remote_ip

Pointer to a buffer where the remote host IP is returned.

Example char IP[4];

DNS_resolver(“www.cipherlab.com.tw”, IP);

Return Value If successful, it returns 0. On error, it returns a negative value.

Remarks It is necessary to define the DNS server IP before calling this function.

See Also gethostbyname

Nportno

Purpose To get an ephemeral port number.

Syntax int Nportno (void);

Example if ((conno = Nopen(remote_ip, “TCP/IP”, Nportno(), 2000, 0)) < 0)

 printf(“Fail to connect Host: %s\r\n”, remote_ip);

Return Value It always returns the port number.

Remarks This function generates a random local port number, which is used in a active
open call to the Nopen() function.

See Also Nopen

socket_block

Purpose To set the connection for blocking operation.

Syntax int socket_block (int conno);

Parameters int conno

Connection number

Example socket_block(conno);

Return Value If successful, it returns 0. On error, it returns -1.

Remarks This function sets non-blocking operation back to blocking operation.

 Blocking operation is the default behavior for network functions. When in
blocking operation, calls to network functions will run to completion, or
return a timeout error if an associated time limit is run out.

See Also socket_noblock

 47

 Chapter 2 TCP/IP COMmunications

socket_cansend

Purpose To check if data can be sent immediately.

Syntax int socket_cansend (int conno, unsigned int len);

Parameters int conno

Connection number

unsigned int len

Number of bytes to write.

Example if (socket_cansend(conno, strlen(buf)))

 Nwrite (conno, buf, strlen(buf));

Return Value If okay, it returns a non-zero value. Otherwise, it returns 0.

See Also Nwrite

socket_fin

Purpose To set the FIN flag on the next outgoing TCP segment.

Syntax int socket_fin (int conno);

Parameters int conno

Connection number

Example val = socket_fin(conno);

Return Value If successful, it returns 0. Otherwise, it returns -1.

Remarks The next TCP segment to be written, following a call to this function, will have
the FIN flag set in the TCP header.

 This is useful for shutting down a connection at the same time that the last
segment is sent. After that, call Nclose() to finish closing the connection.

Note that Nclose() will not send a FIN segment in this case.

See Also Nclose

socket_hasdata

Purpose To check if data is available to be read.

Syntax int socket_hasdata (int conno);

Parameters int conno

Connection number

Example if (socket_hasdata(conno))

 Nread(conno, buf, sizeof(buf));

Return Value If available, it returns a non-zero value. Otherwise, it returns 0.

See Also Nread, recv

48

CipherLab C Programming Part II

socket_ipaddr

Purpose To get the IP address of the remote end of a connection.

Syntax int socket_ipaddr (int conno, unsigned char *ipaddr);

Parameters int conno

Connection number

unsigned char *ipaddr

Pointer to a buffer where the IP address is returned.

Example unsigned char ip[4];

socket_ipaddr(conno, ip);

printf(“Remote IP: %d.%d.%d.%d\r\n”, ip[0], ip[1], ip[2], ip[3]);

Return Value If successful, it returns 0. On error, it returns -1.

Remarks This function copies the remote host IP address of the connection specified by
conno into a buffer indicated by ipaddr. No string terminator is appended by
this function.

See Also getpeername

socket_isopen

Purpose To check if the remote end of a connection is open.

Syntax int socket_isopen (int conno);

Parameters int conno

Connection number

Example if (socket_isopen(conno)) printf(“connected!!”);

Return Value If connected, it returns a non-zero value. Otherwise, it returns 0.

Remarks This function checks if the remote end has entered the ESTABLISHED state.
(TCP only)

See Also Nopen

socket_keepalive

Purpose To set the dummy sending period for a connection.

Syntax int socket_keepalive (int conno, unsigned long val);

Parameters int conno

Connection number

unsigned long val

Dummy sending period given in milli-second.

 Set to 0 to disable dummy sending.

Example val = socket_keepalive(conno, p);

Return Value It returns 0.

Remarks In some special application, the remote end will auto-disconnect if it never
receives any packet in a certain period of time. This function will send an
empty packet to the remote end to avoid such problem. (TCP only)

 49

 Chapter 2 TCP/IP COMmunications

socket_noblock

Purpose To set the connection for non-blocking operation.

Syntax int socket_noblock (int conno);

Parameters int conno

Connection number

Example socket_noblock(conno);

Return Value If successful, it returns 0. On error, it returns -1.

Remarks This function sets non-blocking operation. When in non-blocking operation,
calls to network functions, which normally have to wait for network activity to
be completed, will return the negative value EWOULDBLOCK when such a
condition is encountered.

See Also socket_block

socket_push

Purpose To set the PSH flag on the next outgoing TCP segment.

Syntax int socket_push (int conno);

Parameters int conno

Connection number

Example val = socket_push(conno);

Return Value If successful, it returns 0. Otherwise, it returns -1.

Remarks The next TCP segment to be written, following a call to this function, will have
the PSH flag set in the TCP header.

 This is useful for indicating to the TCP on the remote system that all
internally buffered segments up through this segment should be delivered
to the application as soon as possible.

See Also socket_fin

socket_rxstat

Purpose To get the receive status for a connection.

Syntax int socket_rxstat (int conno);

Parameters int conno

Connection number

Example val = socket_rxstat(conno);

Return Value Return Value

0x01 S_EOF FIN has been received.

0x02 S_UNREA Destination unreachable ICMP.

0x04 S_FATAL Fatal error.

0x08 S_RST Restart message received.

0x10 S_SHUTRECV Receive has been shutdown (active, not by receiving
FIN).

See Also socket_txstat

50

CipherLab C Programming Part II

socket_rxtout

Purpose To set the receive timeout for a connection.

Syntax int socket_rxtout (int conno, unsigned long val);

Parameters int conno

Connection number

unsigned long val

Time interval given in milli-second.

Example val = socket_rxtout(conno, timeout);

Return Value If successful, it returns 0.

On error, it returns -1. The global variable errno is set to indicate the error
condition encountered. Refer to the header files for error codes.

socket_state

Purpose To get the socket status for a connection.

Syntax char socket_state (int conno);

Parameters int conno

Connection number

Example val = socket_state(conno);

Return Value Return Value

1 ESTABLISHED

2 SYN_SENT

3 SYN_RECEIVED

4 LISTEN

5 CLOSING

See Also socket_rxstat, socket_txstat

socket_testfin

Purpose To check if the remote end has closed the connection. (TCP only)

Syntax int socket_testfin (int conno);

Parameters int conno

Connection number

Example if (socket_testfin(conno)) Nclose(conno);

Return Value If closed, it returns a non-zero value. Otherwise, it returns 0.

See Also Nclose

 51

 Chapter 2 TCP/IP COMmunications

socket_txstat

Purpose To get the transmit status for a connection.

Syntax int socket_txstat (int conno);

Parameters int conno

Connection number

Example val = socket_txstat(conno);

Return Value Return Value

0x01 S_PSH Push

0x08 S_FIN_SENT FIN has been sent.

0x10 S_FIN_ACKED My FIN has been ACKED.

0x20 S_PASSIVEOPEN Originally a passive open. (for simultaneous active
open)

See Also socket_rxstat

52

CipherLab C Programming Part II

 53

This section describes the functions related to wireless network configuration. These
functions are only applicable to the mobile computers according to their hardware
configuration. Refer to Appendix IV — Examples.

 WLAN stands for IEEE 802.11b/g
 SPP stands for Serial Port Profile of Bluetooth
 DUN stands for Dial-Up Networking Profile of Bluetooth for connecting a modem
 DUN-GPRS stands for Dial-Up Networking Profile of Bluetooth for activating a mobile's

GPRS
 HID stands for Human Interface Device Profile of Bluetooth
 FTP stands for File Transfer Protocol Profile of Bluetooth
 GSM stands for Global System for Mobile Communications
 GPRS stands for General Packet Radio Service
 UMTS stands for Universal Mobile Telecommunications System
 HSDPA stands for High Speed Downlink Packet Access

Wireless Product Family

Mobile Computer 8000 8200 8300 8400 8500 8700

Bluetooth only 8062 8260 8362 8400 8500 8700

WLAN (802.11b/g) only 8071 8370

Bluetooth + WLAN 8230 8330 8470 8570 8770

Bluetooth + WWAN

Bluetooth + WLAN + WWAN 8790

Note: (1) Refer to the previous section for port mapping of Bluetooth and GSM.
 (2) GSM/GPRS/EDGE or UMTS/HSDPA services are supported on 8700.
 (3) Bluetooth FTP is supported on 8200 only.

Chapter 3
WIRELESS NETWORKING

54

CipherLab C Programming Part II

Include File

All programs that call TCP/IP stack routines need to contain the following include statement.

#include <8xtcpip.h>

This header file, “8xtcpip.h”, contains the function prototypes (declarations) and error code
definitions. This file should normally be placed under the “include” directory of the C compiler -
C:\C_Compiler\INCLUDE\

Library File

All the TCP/IP stack routines have been built into a library file, such as “83WLAN.lib”, “83BNEP.lib”,
“80WLAN.lib”, and “80BNEP.lib”. This file should be specified in the link file of the user program. It
will ask the linker program to search for the TCP/IP Networking routines during linking process. This
file should normally be placed under the “lib” directory of the C compiler - C:\C_Compiler\LIB\

Link File

Below is an example of link file (partial).

/*** Link File ***/

 -lm -lg -ll

 tnet.rel

 83wlan.lib

 8300lib.lib

 c900ml.lib

Note: The three library files must be in the above sequence. That is, “83WLAN.lib” must
be specified first, then “8300lib.lib”, and finally the standard C library file
“c900ml.lib”.

IN THIS CHAPTER

3.1 Network Configuration ... 55
3.2 Initialization & Termination .. 57
3.3 Network Status ... 61

 55

 Chapter 3 Wireless Networking

3.1 NETWORK CONFIGURATION

Before bringing up (initializing) the network, some related parameters must be
configured. These parameters are grouped into a structure, NETCONFIG or BTCONFIG
or GSMCONFIG or PPPCONFIG structure, and are saved in the system. They are kept
by the system during normal operations and power on/off cycles.

Refer to Appendix II — Net Parameters by Index.

3.1.1 IMPLEMENTATION

These parameters can be accessed through System Menu or an application program (via
GetNetParameter, SetNetParameter, and some specific routines as shown below).

Note: The parameters will be set back to the default values when updating kernel.

3.1.2 FUNCTIONS

GetNetParameter

Purpose To retrieve one networking configuration item from the system.

Syntax void GetNetParameter (void *return-value, int index);

Parameters See Appendix II — Net Parameters by Index.

Example int DhcpEnable;

unsigned char IP[4];

....................

DhcpEnable = 1;

SetNetParameter((void*)&DhcpEnable, P_DHCP_ENABLE);

if (NetInit() < 0) {

 printf(“Initialization Fail”);

}

while (CheckNetStatus(NET_IPReady) != 1) OSTimeDly(5);

GetNetParameter((void*)&IP, P_LOCAL_IP);

printf(“IP = %d.%d.%d.%d”, IP[0], IP[1], IP[2], IP[3]);

Return Value None

Remarks This routine gets one network configuration item from the system.

 Make sure the size of return-value is suitable to the configuration type.

56

CipherLab C Programming Part II

SetNetParameter

Purpose To write one networking configuration item to the system.

Syntax void SetNetParameter (void *setting, int index);

Parameters See Appendix II — Net Parameters by Index.

Example int DhcpEnable;

unsigned char IP[4];

....................

DhcpEnable = 1;

SetNetParameter((void*)&DhcpEnable, P_DHCP_ENABLE);

if (NetInit() < 0) {

 printf(“Initialization Fail”);

}

while (CheckNetStatus(NET_IPReady) != 1) OSTimeDly(5);

GetNetParameter((void*)&IP, P_LOCAL_IP);

printf(“IP = %d.%d.%d.%d”, IP[0], IP[1], IP[2], IP[3]);

Return Value None

Remarks This routine writes one network configuration item to the system.

 Use NetInit() to initialize networking according to the configurations
written.

 57

 Chapter 3 Wireless Networking

3.2 INITIALIZATION & TERMINATION

After the networking parameters are properly configured, an application program can call
NetInit() to initialize any wireless module (802.11b/g, Bluetooth, or GSM/GPRS) and
networking protocol stack.

 The wireless modules will not be powered until NetInit() is called.
 When an application program needs to stop using the network, NetClose() must be

called to shut down the network as well as the modules (so that power can be saved).
To enable the network again, NetInit() must be called again.

Note: Any previous network connection and data will be lost after calling NetClose().

3.2.1 OVERVIEW

8000 Series

8062 NetInit(3L) Enables mobile's GPRS functionality via Bluetooth (DUN)

8071 NetInit() Enables 802.11b/g (WLAN)

8200 Series

8230 NetInit()

NetInit(0L)

Enables 802.11b/g (WLAN)

NetInit(3L) Enables mobile's GPRS functionality via Bluetooth (DUN)

NetInit(5L) Enables PPP connection via direct RS-232 (to a generic modem)

8260 NetInit(3L) Enables mobile's GPRS functionality via Bluetooth (DUN)

NetInit(5L) Enables PPP connection via direct RS-232 (to a generic modem)

8300 Series

8330 NetInit()

NetInit(0L)

Enables 802.11b/g (WLAN)

NetInit(3L) Enables mobile's GPRS functionality via Bluetooth (DUN)

NetInit(5L) Enables PPP connection via direct RS-232 (to a generic modem)

8362 NetInit(3L) Enables mobile's GPRS functionality via Bluetooth (DUN)

NetInit(5L) Enables PPP connection via direct RS-232 (to a generic modem)

8370 NetInit() Enables 802.11b/g (WLAN)

NetInit(5L) Enables PPP connection via direct RS-232 (to a generic modem)

58

CipherLab C Programming Part II

8400 Series

8400 NetInit(3L) Enables mobile's GPRS functionality via Bluetooth (DUN)

NetInit(5L) Enables PPP connection via direct RS-232 (to a generic modem)

8470 NetInit()

NetInit(0L)

Enables 802.11b/g (WLAN)

NetInit(3L) Enables mobile's GPRS functionality via Bluetooth (DUN)

NetInit(5L) Enables PPP connection via direct RS-232 (to a generic modem)

8500 Series

8500 NetInit(3L) Enables mobile's GPRS functionality via Bluetooth (DUN)

8570 NetInit()

NetInit(0L)

Enables 802.11b/g (WLAN)

NetInit(3L) Enables mobile's GPRS functionality via Bluetooth (DUN)

8700 Series

8700 NetInit(3L) Enables mobile's GPRS functionality via Bluetooth (DUN)

8770 NetInit()

NetInit(0L)

Enables 802.11b/g (WLAN)

NetInit(3L) Enables mobile's GPRS functionality via Bluetooth (DUN)

8790 NetInit()

NetInit(0L)

Enables 802.11b/g (WLAN)

NetInit(2L) Enables 3.5G

NetInit(3L) Enables mobile's GPRS functionality via Bluetooth (DUN)

All Series

via Modem
Cradle

NetInit(4L) Enables PPP connection via Cradle-IR or direct connection

via Ethernet
Cradle

NetInit(6L) Enables Ethernet connection via Cradle-IR or direct connection

Note: NetInit(7L) is used to enable GPRS connection via 8400 GPRS Cradle only.

 59

 Chapter 3 Wireless Networking

3.2.2 FUNCTIONS

NetInit

Purpose To initialize networking.

Syntax int NetInit (void);

int NetInit (unsigned long mode);

Parameters unsigned long mode

0L WLAN_NETWORKING Enable 802.11b/g (WLAN)

1L BLUETOOTH_NETWORKING Reserved

2L GPRS_NETWORKING Enable GPRS

3L BT_GPRS_NETWORKING Enable mobile's GPRS functionality
via Bluetooth (DUN)

4L IR_PPP_NETWORKING

CRADLE_PPP_NETWORKING

Enable PPP connection via Modem
Cradle

5L RS232_PPP_NETWORKING Enable PPP connection via direct
RS-232 (to a generic modem)

6L IR_MODE_NETWORKING

CRADLE_MODE_NETWORKING

Enable Ethernet connection via
Ethernet Cradle

7L GPRS_CRADLE_NETWORKING Enable GPRS connection via GPRS
Cradle

Example struct NETSTATUS ns;

....................

if (NetInit() < 0) {

 printf(“Initialization Fail”);

.............................

}

while (CheckNetStatus(NET_IPReady) != 1) OSTimeDly(5);

Return Value If successful, it returns 0.

On error, it returns -1. (Usually it is caused by hardware problems.)

Remarks This routine initializes the wireless module and TCP/IP networking protocol
stack. Some part of the initialization is done in a background system task.
When this routine returns, the initialization process might not yet been done.

 It is necessary for the application to check the status of IPReady (see
NetStatus) before performing any networking operations.

 For 8400 GPRS Cradle, it returns -1 when calling NetInit(7L) in the
following conditions: (1) PIN code and GPRS AP name are not configured
correctly via AT commands, and (2) CHAP settings are not configured
correctly on 8400.

See Also CheckNetStatus, NetClose

60

CipherLab C Programming Part II

NetClose

Purpose To close network connections.

Syntax int NetClose (void);

Example val = NetClose();

Return Value It returns 0.

Remarks This routine closes network connections.

 Networking can be restarted by calling NetInit().

See Also NetInit

 61

 Chapter 3 Wireless Networking

3.3 NETWORK STATUS

Once networking has been initialized, information on networking status can be retrieved
from the system. This status information is grouped into a structure, NETSTATUS or
RADIOSTATUS or BTSTATUS or GSMSTATUS, and the system will periodically update
it.

User program must explicitly call CheckNetStatus() to get the latest status. Refer to
Appendix III — Net Status by Index.

3.3.1 FUNCTIONS

CheckNetStatus

Purpose To check on networking status from the system.

Syntax int CheckNetStatus (int index);

Parameters See Appendix III — Net Status by Index.

Example int DhcpEnable;

unsigned char IP[4];

....................

 DhcpEnable = 1;

 SetNetParameter((void*)&DhcpEnable, P_DHCP_ENABLE);

 if (NetInit() < 0) {

 printf(“Initialization Fail”);

 }

 while (!CheckNetStatus(NET_IPReady)) OSTimeDly(10);

 GetNetParameter((void*)&IP, P_LOCAL_IP);

 printf(“IP = %d.%d.%d.%d”, IP[0], IP[1], IP[2], IP[3]);

Return Value See values listed in NETSTATUS, RADIOSTATUS, BTSTATUS, and GSMSTATUS
structures.

See Also GetBTStatus, GetNetStatus

62

CipherLab C Programming Part II

 63

IEEE 802.11b/g is an industrial standard for Wireless Local Area Networking (WLAN),
which enables wireless communications over a long distance. The speed of connection
between two wireless devices will vary with range and signal quality.

To maintain a reliable connection, the data rate of the 802.11b/g system will
automatically fall back as range increases or signal quality decreases.

802.11 Specification

Frequency Range: 2.4 GHz

Data Rate: 802.11b - 1, 2, 5.5, 11 Mbps

802.11g - 6, 9, 12, 18, 24, 36, 48, 54 Mbps

802.11n – 6.5, 13, 19.5, 26, 39, 52, 58.5, 65 Mbps

Connected Devices: 1 for ad-hoc mode (No AP)

Multiple for infrastructure mode (AP required)

Protocol: IP/TCP/UDP

Max. Output Power: 50 mW (802.11b)

Spread Spectrum: DSSS/OFDM

Modulation: 802.11b - DBPSK, DQPSK, CCK

802.11g – BPSK, QPSK, 16-QAM, 64-QAM

802.11n – BPSK, QPSK, 16-QAM, 64-QAM

Standard: IEEE 802.11b/g/n, interoperable with Wi-Fi devices

Note: All specifications are subject to change without prior notice. IEEE 802.11n is only
for 8231

IN THIS CHAPTER

4.1 Structure ... 64
4.2 Functions ... 75

Chapter 4
IEEE 802.11B/G/N

64

CipherLab C Programming Part II

4.1 STRUCTURE

4.1.1 NETCONFIG STRUCTURE

Use GetNetParameter() and SetNetParameter() to change the settings by index.
Refer to Appendix II — Net Parameters by Index.

struct NETCONFIG {

 int DhcpEnable;

 unsigned char IpAddr[4];

 unsigned char SubnetMask[4];

 unsigned char DefaultGateway[4];

 unsigned char DnsServer[4];

 char DomainName[129];

 char LocalName[33];

 char SSID[33];

 int SystemScale;

 WLAN_FLAG Flag;

 int WepLen;

 int DefaultKey;

 unsigned char WepKey[4][14];

 char EapID[33];

 char EapPassword[33];

 unsigned char WPAPassphrase[64];

 unsigned char WPApmk[32];

 unsigned char WPAchk[2];

 unsigned char CurrentBSSID[6];

 unsigned char FixedBSSID[6];

 int iRoamingTxLimit_11b;

 int iRoamingTxLimit_11g;

 int RssiThreshold; // (for 8200 only)

 int RssiDelta; // (for 8200 only)

 int RoamingPeriod; // (for 8200 only)

 int ScanChannelTime; // (for 8200 only)

unsigned char char ScanChannel[14]; // (for 8200 only)

char ReservedByte[54];

};

 65

 Chapter 4 IEEE 802.11b/g

Parameter Default Description Index

int DhcpEnable 1 0: disable DHCP

1: enable DHCP

11

unsigned char IpAddr[4] 0.0.0.0 Local IP Address 1

unsigned char SubnetMask[4] 0.0.0.0 Subnet Mask 2

unsigned char
DefaultGateway[4]

0.0.0.0 IP address of Default Gateway or router 3

unsigned char DnsServer[4] 0.0.0.0 IP address of DNS server 4

char DomainName[129] Null Domain Name (Read only) 16

char LocalName[33] S/N Local hostname.

By default, it shows the serial number of
mobile computer.

5

char SSID[33] Null Service Set ID or AP name, which is used
for Remote Device association.

6

int SystemScale 2 Access Point Density, determines when the
mobile computer should look for another
AP that has better signal strength.

1: Low

2: Medium

3: High

4: Custom-TxRate

5: Custom-Rssi

14

unsigned int WLAN_FLAG 0x19 See WLAN_FLAG Structure 12, 17, 18,
21, 22, 30,
33, 39

int WepLen 1 0: 64 bits Wep Key

(5 bytes to be configured for the WepKey
parameter)

1: 128 bits Wep Key

(13 bytes to be configured for the WepKey
parameter)

13

int DefaultKey 0 Use default Wep Key 0 15

unsigned char WepKey[4][14] Null WEP Key 0 ~ 3 7-10

char EapID[33] Null ID used to associate to Cisco® APs 19

char EapPassword[33] Null Password used to associate to Cisco® APs 20

unsigned char
WPAPassphrase[64]

Null WPA-PSK, WPA2-PSK (Pre-Shared Key
mode) — Passphrase to access the
network: 8~63 characters

34

unsigned char WPApmk[32] Null Stored Pre-Shared Key, generated based
on SSID and Passphrase

66

CipherLab C Programming Part II

Parameter Default Description Index

unsigned char WPAchk[2] Null Checksum to detect if any changes made
to SSID or Passphrase. (If yes, the
Pre-Shared Key will be re-generated.)

unsigned char CurrentBSSID[6] Null Current Basic Service Set ID 35

unsigned char FixedBSSID[6] Null Use AP’s MAC address as current Basic
Service Set ID

36

int iRoamingTxLimit_11b 2 This parameter only works with
“Custom-TxRate” system scale. Roaming
starts when the data transmission rate
gets lower than the specified value.

1: 1 Mbps

2: 2 Mbps

4: 5.5 Mbps

8: 11 Mbps

37

int iRoamingTxLimit_11g 8 This parameter only works with
“Custom-TxRate” system scale. Roaming
starts when the data transmission rate
gets lower than the specified value.

1: 1 Mbps

2: 2 Mbps

4: 5.5 Mbps

8: 11 Mbps

16: 6 Mbps

32: 9 Mbps

48: 12 Mbps

64: 18 Mbps

80: 24 Mbps

96: 36 Mbps

112: 48 Mbps

128: 54 Mbps

38

int RssiThreshold (for 8200
only)

-70 Specify this parameter as the RSSI
threshold ranging from -50 to -90 dBm.
With the SystemScale set to 5, the mobile
computer will search for another AP with
better signal strength when RSSI of the
current AP is lower than this parameter.

91

int RssiDelta (for 8200 only) 5 When a new AP is found, the mobile
computer will connect to the new AP if the
RSSI defferential between the two APs is
equal to or higher than the specified
RssiDelta that can be set ranging from 0 to
20.

92

 67

 Chapter 4 IEEE 802.11b/g

int RoamingPeriod (for 8200
only)

5 This parameter, ranging from 3 to 10 in
seconds, determines the time interval
between two searches for another AP.

93

int ScanChannelTime (for 8200
only)

100 This parameter determines the period of
time in each channel the mobile computer
searches for an AP. The time period can be
set ranging from 60 to 110 ms. If the
ScanTime flag (index 48) is set to 1, the
time period will range from 120 to 220 ms.

58

unsigned char ScanChannel[14]
(for 8200 only)

{1,1,1,
1,1,1,

1,1,1,1,
1,1,

1,1}

In this parameter, there are 14 elements
representing the 14 channels for 2.4 GHz
WLAN. When a particular element is set to
1, the mobile computer will search the AP
in the corresponding channel.

57

char ReservedByte[54] Null Reserved

4.1.2 WLAN_FLAG STRUCTURE

typedef struct {

 unsigned int Authen: 1;

 unsigned int Wep: 1;

 unsigned int Eap: 1;

 unsigned int PWRSave: 1;

 unsigned int Preamble: 2;

 unsigned int AdHoc: 1;

 unsigned int WPA_PSK: 1;

 unsigned int WPA2_PSK: 1;

 unsigned int ScanTime: 1;

 unsigned int Reservedflag: 6;

} WLAN_FLAG;

68

CipherLab C Programming Part II

Parameter Bit Default Description Index

unsigned int Authen 0 1 0: Share Key

1: Open System

12

unsigned int Wep 1 0 0: WEP Key disable

1: WEP Key enable

17

unsigned int Eap 2 0 0: EAP disable

1: EAP enable

18

unsigned int PWRSave 3 1 0: Power-saving disable

1: Power-saving enable

21

unsigned int Preamble 4-5 1 0: reserved

1: long preamble

2: short preamble

3: both

22

unsigned int AdHoc 6 0 Ad-hoc mode

0: disable

1: enable

30

unsigned int WPA_PSK 7 0 0: WPA-PSK disable

1: WPA-PSK enable

33

unsigned int WPA2_PSK 8 0 0: WPA2-PSK disable

1: WPA2-PSK enable

39

Unsigned int ScanTime 9 0 0: WIFI Scan Time Normal

1: WIFI Scan Time Double

48

unsigned int Reservedflag 10-15 0 Reserved

4.1.3 NETSTATUS STRUCTURE

User program must explicitly call CheckNetStatus() to get the latest status. Refer to
Appendix III — Net Status by Index.

struct NETSTATUS {

 int State;

 int Quality;

 int Signal;

 int Noise;

 int Channel;

 int TxRate;

 69

 Chapter 4 IEEE 802.11b/g

 int IPReady;

};

Parameter Description Value Index

int State Connection State 0

1

NET_DISCONNECTED

NET_CONNECTED

0

int Quality Link Quality 0 ~ 10

10 ~ 15

15 ~ 30

30 ~ 50

50 ~ 80

Very poor

Poor

Fair

Good

Very good

1Note

int Signal Signal Strength
Level

0 ~ 30

30 ~ 60

over 60

Weak

Moderate

Strong

2Note

int Noise Noise Level 1

2 ~ 3

4 ~ 5

Weak

Moderate

Strong

3Note

Note: Instead of using indexes 1~3, we suggest using indexes 14~16 for 802.11b/g
modules. For 8231, indexes 1~3 are not supported.

Parameter Description Value Index

int Channel Current Channel
Number

1 ~ 11 4

int TxRate Current Transmit
Rate

1

2

4

8

16

32

48

64

80

96

112

128

1 Mbps

2 Mbps

5.5 Mbps

11 Mbps

6 Mbps

9 Mbps

12 Mbps

18 Mbps

24 Mbps

36 Mbps

48 Mbps

54 Mbps

5 Note

int IPReady Mobile Computer –

IP Status for both
WLAN and
Bluetooth

-1

0

1

ErrorNote

Not Ready

Ready

6

70

CipherLab C Programming Part II

Note: 1. If CheckNetStatus(IPReady) returns -1, it means an abnormal break occurs
during PPP, DUN-GPRS, or GPRS connection. Such disconnection may be caused
by the mobile computer being out of range, improperly turned off, etc.

 2. For 8231, unlike 8230, the received TxRate value (index 5) is exactly the data
rate without conversion. For instance, suppose the data rate is 54Mbps; 8231 gets
the received TxRate of 54 while 8230 gets 128 that is to be converted according to
the parameter table.

4.1.4 RADIOSTATUS STRUCTURE

User program must explicitly call ChecRadioStatus() to get the latest status. Refer to
Appendix III — Net Status by Index.

struct RADIOSTATUS {

 int SNR;

 int RSSI;

 int NoiseFloor;

};

Parameter Description Value Index

int SNR Signal to Noise
ratio (dB)

0 ~ 10

10 ~ 20

20 ~ 30

30 ~ 40

over 40

Very poor

Poor

Fair

Good

Very good

14

int RSSI Received Signal
Strength Indication
(-dBm)

0 ~ 60

60 ~ 75

over 75

Strong

Moderate

Weak

15 Note

int NoiseFloor Noise Floor (-dBm) 0 ~ 92

92 ~ 98

over 98

Strong

Moderate

Weak

16 Note

Note: 1. Indexes 14~16 are only valid for 8000/8200/8300/8400/8700 with 802.11b/g
module.

 2. Values of RSSI and NoiseFloor retrieved by 8231 will be negative numbers.

 71

 Chapter 4 IEEE 802.11b/g

4.1.5 WI-FI HOTSPOT SEARCH STRUCTURE

This structure is provided for 8200, 8400, and 8700 mobile computers to scan for the
Wi-Fi hotspots within range.

The user program must exactly call WIFIScan(WifiDev *APList, int Count) to get the
Wi-Fi hotspot.

typedef struct {

unsigned char SSID[32];

unsigned char BSSID[6]; //MACID of WIFI device

char Rssi; //dBm, based on -100dBm(Note)

unsigned char Channel;

unsigned char BandType; // 0: 802.11b/g 1:802.11b

unsigned char BSSType; // 0: Ad-Hoc, 1:Infrastructure

union{

unsigned char Byte;

struct{

unsigned char reserved:5;

unsigned char wpa2 :1;

unsigned char wpa :1;

unsigned char wep :1;

}Bit;

}Security;

}WifiDev;

Parameter Description Value

unsigned char SSID[32] Service Set Identifier

unsigned char BSSID[6] Basic Service Set ID (MAC ID
of WI-FI device)

char Rssi Received Signal Strength
Indication (dBm)

based on -100dBm(Note)

e.g. value 40 = -60 dBm

unsigned char Channel 1~11

72

CipherLab C Programming Part II

unsigned char BandType 0: 802.11b/g, 1:802.11b

unsigned char BSSType 0: Ad-Hoc, 1:Infrastructure

Security wep bit=1, WEP encryption is enabled
in the device

wep bit=0, WEP encryption is disabled
in the device

wpa bit=1, WPA encryption is enabled
in the device

wpa bit=0, WPA encryption is disabled
in the device

wpa2 bit=1, WPA2 encryption is
enabled in the device

wpa2 bit=0, WPA2 encryption is
disabled in the device

Note: For 8200 series, the RSSI has no need to count the -100dBm.

 73

 Chapter 4 IEEE 802.11b/g

4.1.6 WI-FI PROFILE STRUCTURE

This structure is provided for 8200, 8400 and 8700 mobile computers to access Wi-Fi
profiles. There are total 4 profiles to save Wi-Fi connection settings. Use
GetNetParameter() and SetNetParameter() to access these profiles. Refer to
AppendixII-Net Parameters by Index

typedef struct{

unsigned char SSID[32];

unsigned char BSSType;

unsigned char Security;

 union{

 struct WEP{

 char WepLen;

 char DefaultKey;

 char WepKey[4][14];

 }WEP;

 struct EAP{

 char EapID[33];

 char EapPassword[33];

 }EAP;

 char WPAPassphrase[64];

}Keys;

}WIFIPROFILE;//size=100 Bytes

Parameter Description Value

unsigned char SSID[32] Service Set Identifier

unsigned char BSSType Basic Service Set 0: Ad-hoc

1: Infrastructure

74

CipherLab C Programming Part II

unsigned char Security Authentication and Encryption
Type

0: None

1: Open System Authentication+WEP

2: Shared Key Authentication+WEP

3: WPA-Pre-shared Key

4: WPA2-Pre-shared Key

5: EAP

char WepLen Length of WEP Key 0: 64 bits

1: 128 bits

char DefaultKey Default WEP Key

char WepKey[4][14] WEP Key 0~3

char EapID ID used to associate to Cisco
APs

char EapPassword[33] Password used to associate to
Cisco APs

char WPAPassphrase[64] WPA-PSK, WPA2-PSK.
Passphrase to access the
network: 8~63 characters

Example:
unsigned char buf[100];
WIFIPROFILE *ptr;
char temp[12]="1234567890";

//To store current WIFI connection setting to Profile1
SetNetParameter((void*)0, P_PROFILE_1);

//Get Profile1 to edit
GetNetParameter(buf, P_PROFILE_1);

ptr=(WIFIPROFILE*)buf;
strcpy(ptr-> Keys.WPAPassphrase, temp);

//Save this setting to Profile2
SetNetParameter(buf, P_PROFILE_2);

//Use Profile2 to create a WIFI connection
SetNetParameter((void*)0, P_APPLY_PROFILE_2);

NetInit (0L); // Initial Net

while (1)
{
 if (CheckNetStatus (NET_IPReady))
 break;

 if (getchar () == KEY_ESC) // press ESC key
 return;
}

 75

 Chapter 4 IEEE 802.11b/g

4.2 FUNCTIONS

4.2.1 OBSOLETE FUNCTIONS

Note: For the stability and compatibility concern, it is recommended to use
GetNetParameter(), SetNetParameter(), and CheckNetStatus().

GetNetStatus 8000, 8300, 8500

Purpose To retrieve status information on wireless networking from the system.

Syntax void GetNetStatus (struct NETSTATUS *ns);

Example struct NETSTATUS ns;

....................

GetNetStatus(&ns);

printf(“Link Quality: %d”,ns.Quality);

Return Value None

Remarks It is recommended to use CheckNetStatus() for the stability and compatibility
in the future.

See Also CheckNetStatus

76

CipherLab C Programming Part II

GetNetConfig 8000, 8300, 8500

Purpose To retrieve the whole networking configurations from the system.

Syntax void GetNetConfig (struct NETCONFIG *config);

Example struct NETCONFIG nc;

struct NETSTATUS ns;

...................

GetNetConfig(&nc);

nc.DhcpEnable = 1;

SetNetConfig(&nc);

if (NetInit() < 0) {

 printf(“Initialization Fail”);

}

do {

OSTimeDly(10);

 GetNetStatus(&ns);

} while (!ns.IPReady);

Return Value None

Remarks This routine gets the whole network configurations from the system. It is useful
when the application wants to change more than one of the configuration
parameters.

 The application should reserve enough stack or define a static variable to
store the structure of NETCONFIG.

 It is recommended to use GetNetParameter() to get the parameters for the
stability and compatibility in the future.

See Also GetNetParameter, SetNetConfig

 77

 Chapter 4 IEEE 802.11b/g

SetNetConfig 8000, 8300, 8500

Purpose To write the whole networking configurations to the system.

Syntax void SetNetConfig (struct NETCONFIG *config);

Example struct NETCONFIG nc;

struct NETSTATUS ns;

...................

GetNetConfig(&nc);

nc.DhcpEnable = 1;

SetNetConfig(&nc);

if (NetInit() < 0) {

 printf(“Initialization Fail”);

}

do {

 OSTimeDly(10);

 GetNetStatus(&ns);

} while (!ns.IPReady);

Return Value None

Remarks This routine writes the whole network configurations to the system. Before
writing, the application should make sure that every setting is significant. The
best way is calling GetNetConfig() first to get the original settings and change
them one by one.

 The application should reserve enough stack or define a static variable to
store the structure of NETCONFIG.

 It is recommended to use SetNetParameter() to set the parameters for the
stability and compatibility in the future. NetInit() will initialize the
networking according to the configurations written.

See Also GetNetConfig, SetNetParameter

78

CipherLab C Programming Part II

4.2.2 SCANNING FOR WI-FI HOTSPOTS

WIFIScan 8200, 8400, 8700

Purpose To detect any Wi-Fi hotspot within range

Syntax int WIFIScan(WifiDev *APList, int Count);

Parameters WifiDev *APList

Pointer to WifiDev where the scan results are stored.

int Count

Maximum number of scan results. The maximum value is 8.

Example static WifiDev WifiDevList[8];

static int DevNum=0;

....................

DevNum=WIFIScan(WifiDevList, 8);

Return Value The amount of the Wi-Fi hotspots detected

Remarks The function is executable on-line without breaking the current connection.

See Also

 79

Below are available libraries that support DUN-GPRS mode. Refer to Appendix IV —
Examples.

Hardware Configuration External Libraries Required

8000 Series 8062 – Bluetooth 80PPP.lib OR 80BNEP.lib

8200 Series

8230 – Bluetooth + 802.11b/g ---

8260 – Bluetooth ---

8300 Series

8330 – Bluetooth + 802.11b/g 83PPP.lib OR 83NetCombo.lib

8362 – Bluetooth 83PPP.lib OR 83BNEP.lib

8400 Series

8400 – Bluetooth 84PPP.lib

8470 – Bluetooth + 802.11b/g 84PPP.lib OR 84WLAN.lib

8500 Series

8500 – Bluetooth ---

8570 – Bluetooth + 802.11b/g ---

8700 Series

8700 – Bluetooth ---

8770 – Bluetooth + 802.11b/g ---

8790 – Bluetooth + 802.11b/g +
3.5G

Bluetooth Specification
Frequency Range: 2.4 GHz

Profiles: SPP, DUN, HID, FTP

Spread Spectrum: FHSS

Modulation: GFSK

Standard: Bluetooth version 2.0 + EDR

Note: All specifications are subject to change without prior notice.

IN THIS CHAPTER

5.1 Bluetooth Profiles Supported .. 80
5.2 Structure ... 81
5.3 Functions ... 85

Chapter 5
BLUETOOTH

80

CipherLab C Programming Part II

5.1 BLUETOOTH PROFILES SUPPORTED

Serial Port Profile (SPP)
For ad-hoc networking, without going through any access point.

Dial-Up Networking Profile (DUN)
For a mobile computer to make use of a Bluetooth modem or mobile phone as a wireless modem.
Also, it can be used to activate the GPRS functionality on a mobile phone.

Human Interface Device Profile (HID)
For a mobile computer to work as an input device, such as a keyboard for a host computer.

File Transfer Protocol Profile (FTP)

For a mobile computer to connect to a file server for file transfer.

CipherLab ACL Packet Data
For a mobile computer to connect to a 36xx device.

Note: Bluetooth FTP is supported on 8200 only.

 81

 Chapter 5 Bluetooth

5.2 STRUCTURE

5.2.1 BTCONFIG STRUCTURE

Use GetNetParameter() and SetNetParameter() to change the settings by index.
Refer to Appendix II — Net Parameters by Index.

typedef struct {

char BTRemoteName[20];

unsigned char BTPINCode[16];

unsigned char BTLinkKey[16];

BTSearchInfo Dev[8];

BT_FLAG Flag;

unsigned char BTGPRSAPname[20];

char ACL36xx[16];

char ReservedByte[204];

} BTCONFIG;

Parameter Default Description Index

char BTRemoteName[20] Null ID used for Remote Device association 25

unsigned char
BTPINCode[16]

Null PIN Code for pairing (usually in Slave mode) 27

unsigned char
BTLinkKey[16]

Null Link Key generated by pairing ---

BTSearchInfo Dev[8] Null See BTSearchInfo Structure 40-47

BT_FLAG Flag --- See BT_FLAG Structure 26, 28, 29

unsigned char
BTGPRSAPname[20]

Null Name of Access Point for Bluetooth DUN-GPRS
connection

32

char ACL36xx[16] Null Used by CipherLab ACL packets ---

char ReservedByte[204] Null Reserved ---

82

CipherLab C Programming Part II

5.2.2 BT_FLAG STRUCTURE

typedef struct {

unsigned int BTPWRSaveON: 1;

unsigned int BTSecurity: 1;

unsigned int BTBroadcastON: 1;

unsigned int Reservedflag: 13;

} BT_FLAG;

Parameter Bit Default Description Index

unsigned int BTPWRSaveON 0 1 Bluetooth Power-saving

0: disable

1: enable

29

unsigned int BTSecurity 1

0 Bluetooth Security

0: disable

1: enable

26

unsigned int
BTBroadcastON

2 1 Bluetooth broadcasting

0: disable

1: enable

28

unsigned int Reservedflag 3-15 0 Reserved ---

Note: When Bluetooth security is enabled without providing a pre-set PIN code, dynamic
input of PIN code is supported.

 83

 Chapter 5 Bluetooth

5.2.3 BTSEARCH STRUCTURE

typedef struct {

unsigned char Machine;

unsigned char ADDR[6];

unsigned char Name[12];

unsigned char PINCode[16];

unsigned char LinkKey[16];

} BTSearchInfo;

size = 51 bytes

Parameter Default Description Index

unsigned char Machine 0 Host profile indication

0: empty

1: AP

3: SPP

4: DUN

6: Reserved

7: FTP

(If bit 7=1, it means the device is currently
connected.)

40-47

unsigned char ADDR[6] Null Host MAC ID

unsigned char Name[12] Null HostName

unsigned char PINCode[16] Null PIN code for pairing (Master mode)

unsigned char LinkKey[16] Null Link Key generated by pairing

84

CipherLab C Programming Part II

5.2.4 BTSTATUS STRUCTURE

User program must explicitly call CheckNetStatus() to get the latest status. Refer to
Appendix III — Net Status by Index.

typedef struct {

 int State;

 int Signal;

 int Reserved[10];

} BTSTATUS;

Parameter Description Value Index

int State Connection State 0

1

BT_DISCONNECTED

BT_CONNECTED

7

int Signal RSSI Signal Level -10 ~ -6

-6 ~ 5

over 5

Weak

Moderate

Strong

8

int Reserved[10] Reserved Null --- ---

 85

 Chapter 5 Bluetooth

5.3 FUNCTIONS

Note: For the stability and compatibility concern, it is recommended to use
GetNetParameter(), SetNetParameter(), and CheckNetStatus().

5.3.1 FREQUENT DEVICE LIST

Through the pairing procedure, the mobile computer is allowed to keep record of the
latest connected device(s) for different Bluetooth services, regardless of authentication
enabled or not. Such record is referred to as “Frequent Device List”.

Service Type In Frequent Device List

Serial Port SPP Only 1 device is listed for quick connection.

Dial-up Networking DUN Only 1 device is listed for quick connection.

Human Interface Device HID Only 1 device is listed for quick connection.

File Transfer FTP Only 1 device is listed for quick connection.

Refer to 5.2.3 BTSEARCH Structure for details.

Get Frequent Device List

The length of Frequent Device List by calling GetNetParameter() is 51 characters:

BTSearchInfo DeviceA;

GetNetParameter(&DeviceA, 40);

Set Frequent Device List

To enable quick connection to a specific device without going through the inquiry and pairing
procedure, a user-definable Frequent Device List can be set up by calling SetNetParameter().

 If there is an existing Frequent Device List generated from the inquiry and pairing procedure, it
then may be partially or overall updated by this, and vice versa.

 There are five fields: Service Type, MAC ID, Device Name, PIN Code, and Link Key. If
authentication is disabled, you only need to specify the first three fields. Otherwise, the PIN
code field needs to be specified for generating Link Key.

86

CipherLab C Programming Part II

5.3.2 INQUIRY

To complete the pairing procedure, it consists of two steps: (1) to discover the Bluetooth
devices within range, and (2) to page one of them that provides a particular service.
These are handled by BTInquiryDevice() and BTPairingTest() respectively.

 Once the pairing procedure is completed and the list is generated, next time the
mobile computer will automatically connect to the listed device(s) without going
through the pairing procedure.

BTInquiryDevice

Purpose To discover any nearby Bluetooth devices.

Syntax int BTInquiryDevice (BTSearchInfo *Info, int max);

Parameters BTSearchInfo *Info

Pointer to BTSearchInfo structure where the information of paired devices is
stored.

int max

Maximum number of Bluetooth devices that can be inquired.

Example BTSearchInfo Info[4];

int Rst;

........

Rst = BTInquiryDevice(Info, 4);

if (Rst) {

 printf(“Find %d devices in range”, Rst);

}

Return Value It returns information on the devices discovered. Refer to 5.2.3 BTSEARCH
Structure structure.

Remarks This routine gets information on Bluetooth devices nearby.

 It will take about 20 seconds to find devices.

See Also BTPairingTest

 87

 Chapter 5 Bluetooth

5.3.3 PAIRING

According to the search results for nearby Bluetooth devices, the application can then try
to pair with any of the remote devices by calling BTPairingTest().

BTPairingTest

Purpose To pair with one Bluetooth device.

Syntax int BTPairingTest (BTSearchInfo *Info, int TargetMachine);

Parameters BTSearchInfo *Info

Pointer to BTSearchInfo structure where the information of paired devices is
stored.

int Targetmachine

3 BTSerialPort Bluetooth Serial Port service (= SPP)

4 BTDialUpNetworking Bluetooth Dial-up Networking service (= DUN)

7 BTOBEXFTPServer Bluetooth File Transfer service (= FTP)

Example BTSearchInfo Info[4];

int Rst;

........

Rst = BTInquiryDevice(Info, 4);

if (Rst) {

 printf(“Find %d devices in range”, Rst);

 Rst = BTPairingTest(&Info[0], BTSerialPort);

if (Rst) printf(“Pair OK”);

 else printf(“Pair Fail”);

}

Return Value If successful, it returns 1.

On error, it returns 0.

Remarks This routine tries to pair with one Bluetooth device with matching type of
service (SPP, DUN or FTP) specified by TargetMachine.

 Once pairing successfully, the MAC ID, PIN Code, and Link Key of this
remote device will be updated to the Frequent Device List.

See Also BTInquiryDevice

88

CipherLab C Programming Part II

5.3.4 USEFUL FUNCTION CALL

We also provide some simple function calls for pairing with a Bluetooth device easily.

BTPairingTestMenu

Purpose To create a menu and try to pair with one Bluetooth device.

Syntax void BTPairingTestMenu (void);

Example See sample code.

Return Value None

Remarks Once pairing successfully, the MAC ID of this remote device will be updated to
the Frequent Device List.

See Also BTPairingTest, FreqDevListMenu

FreqDevListMenu

Purpose To create a menu (Frequent Device List) listing all the devices that the mobile
computer frequently connects to.

Syntax void FreqDevListMenu (void);

Example See sample code.

Return Value None

See Also BTPairingTestMenu

 89

 Chapter 5 Bluetooth

Sample Code

==

#include <8000lib.h>

#include <ucos.h>

static const MENU_ENTRY PAIRING_ENTRY;

static const MENU_ENTRY DEVICELIST_ENTRY;

MENU SPP_MENU =

{2, 1, 0, “Bluetooth”, {(void*)&PAIRING_ENTRY, (void*)&DEVICELIST_ENTRY}};

static const MENU_ENTRY PAIRING_ENTRY = {0, 1, “1 Pairing”, BTPairingTestMenu, 0};

static const MENU_ENTRY DEVICELIST_ENTRY = {0, 2, “2 Dev. List”, FreqDevListMenu, 0};

main()

{

while (1) prc_menu((void*)&SPP_MENU);

}

90

CipherLab C Programming Part II

5.3.5 OBSOLETE FUNCTIONS

GetBTStatus 8000, 8300, 8500

Purpose To retrieve status information on Bluetooth networking from the system.

Syntax void GetBTStatus (BTSTATUS *bs);

Example (...)

Return Value None

Remarks It is recommended to use CheckNetStatus() for the stability and compatibility
in the future.

See Also CheckNetStatus

GetBTConfig 8000, 8300, 8500

Purpose To retrieve the whole Bluetooth configurations from the system.

Syntax void GetBTConfig (BTCONFIG *config);

Example (...)

Return Value None

Remarks This routine gets the whole Bluetooth configurations from the system. It is
useful when the application wants to change more than one part of the
configuration parameters.

 The application should reserve enough stack or define a static variable to
store the structure of NETCONFIG.

 It is recommended to use GetNetParameter() to get the parameters for the
stability and compatibility in the future.

See Also GetNetParameter, SetBTConfig

SetBTConfig 8000, 8300, 8500

Purpose To write the whole Bluetooth configurations to the system.

Syntax void SetBTConfig (BTCONFIG *config);

Example (...)

Return Value None

Remarks This routine writes the whole network configurations to the system. Before
writing, the application should make sure that every setting is significant. The
best way is calling GetBTConfig() first to get the original settings and change
them one by one.

 The application should reserve enough stack or define a static variable to
store the structure of BTCONFIG.

 It is recommended to use SetNetParameter() to set the parameters for the
stability and compatibility in the future. NetInit() will initialize the
networking according to the configurations written.

See Also GetBTConfig, SetNetParameter

 91

 Chapter 5 Bluetooth

5.3.6 ACL FUNCTIONS

Get36xxParameter

Purpose To get a parameter of 3610.

Syntax void Get36xxParameter (void *nc, int index);

Parameters void *nc

A parameter for 3610.

int index

Index number of the parameter (see the table below).

Example unsign char SN[9];

Get36xxParameter(SN, P_36xxSN);

Return Value None

See Also Set36xxParameter

Parameter Default Description Index

 Set parameter to 36xx. It’s valid
only when the Bluetooth
connection between terminal
and 36xx has been established.

P_SetTo36XX (0)

unsigned char BTACL 95 The type of Bluetooth for ACL

95:ACL_CDCVCOM

96:ACL_VCOM

97:ACL_PCAT_US

98:ACL_PCAT_French

99:ACL_PCAT_German

100:ACL_PCAT_Italy

101:ACL_PCAT_Swedish

102:ACL_PCAT_Norwegian

103:ACL_PCAT_UK

104:ACL_PCAT_Belgium

105:ACL_PCAT_Spanish

106:ACL_PCAT_Portuguese

107:ACL_PS55A01_2_Japanese

108:ACL_USER_Defined_KBD

109:ACL_PCAT_Turkish

110:ACL_PCAT_Hungarian

111:ACL_PCAT_Swiss

112:ACL_PCAT_Danish

P_BTACL_Type (1)

92

CipherLab C Programming Part II

unsigned char
InterCharDly

0 Inter-Character Delay (0~254
ms)

P_INTER_CHAR_DELAY (2)

unsigned char SN[9] S/N To set the serial number of 3610
for connection through the
Bluetooth

P_36xxSN (3)

unsigned char DigitsTrans 0 Digits Transmission

0: AlphaNum Key

1: Numeric Key

P_DigitsTrans (4)

unsigned char
CapitalLockType

0 Capital Lock Type

0: Normal

2: Capital Lock

3: Shift Lock

P_CapitalLockType(5)

unsigned char
DigitalLayout

0 Digital Layout.

0: Normal

2: Lower Row

3: Upper Row

P_DigitalLayout(6)

unsigned char
AlphabetTrans

0 Alphabets Tranmission

0: Case-sensitive

1: Ignore Case

P_AlphabetTrans(7)

unsigned char CapitalLock 0 Capital Lock

0: Capital Lock OFF

1: Capital Lock ON

2: Auto Detect

P_CapitalLock(8)

unsigned char AltCompose 0 Alt Compose

0: disable Alt Sending

1: enable Alt Seding

P_AltCompose(9)

unsigned char KBDLayout 0 Alphabets Layout

0: Normal

1: AZERTY

2: QWERTZ

P_KBDLayout(11)

unsigned char AltCompose 0 HID Character Transmit Mode

0: Batch Processing

1: By Character

P_HIDCharTransMode (12)

unsigned char
SpecialKeyboard

0 Special Keyboard

0:Apply

1:Bypass

P_SpecialKBDSet (14)

 93

 Chapter 5 Bluetooth

Set36xxParameter

Purpose To set a parameter of 3610 through Bluetooth.

Syntax char Set36xxParameter (void *nc, int index);

Parameters void *nc

A parameter for 3610.

int index

Index number of the parameter.

Example unsign char SN[9], P;

memcpy(SN, “BS6065535”, 9);

Set36xxParameter(SN, P_36xxSN);

P=ACL_VCOM;

Set36xxParameter(&P, P_BTACL_Type);

Return Value
Result Return Value

Setting successful 1

Setting failed 0

Can’t be set (not connected or 3610 not ready) -1

Wrong parameter -2

See Also Get36xxParameter

94

CipherLab C Programming Part II

 95

Data services of GSM, including SMS (Short Message Service) and data call, are provided
for receiving and sending data. They are performed via a virtual COM port, namely,
COM3. The communication types, COMM_SMS and COMM_GSMMODEM, which are for
SMS and data call respectively, should be assigned by calling SetCommType() before
use. The COMM_SMS supports uncompressed PDU (Protocol Description Unit) message
mode. It can handle both 7-bit default alphabet and 8-bit data. In addition, concatenated
messages are also supported. Refer to Appendix IV — Examples.

Note: GSM/GPRS/EDGE or UMTS/HSDPA services are supported on 8700.

IN THIS CHAPTER

6.1 Data Format ... 96
6.2 Security ... 99
6.3 GSM Programming Flow ... 101
6.4 Structure ... 102
6.5 Functions ... 105

Chapter 6
GSM/GPRS

96

CipherLab C Programming Part II

6.1 DATA FORMAT

read_com data format

For SMS service, the data format for single messages and concatenated messages is different. The
short messages will be removed from the SIM card after being read out. If it is necessary to save
the received data, data storage structure like a DAT or DBF file is recommended.

Message Type Single Message Concatenated Message

Using 7-bit default alphabet total length ≤ 160 characters total length > 160 characters

Using 8-bit total length ≤ 140 octets total length > 140 octets

Using 16-bit total length ≤ 70 characters total length > 70 characters

 Single Message:

 The diagram below shows the data format for a single message received by calling
read_com(). The data length is the number of octets of data.

Example:

20050401140506+32<0x0d><0x0a>+886920123456<0x0d><0x0a><0x0A>

HelloHello

 97

 Chapter 6 GSM/GPRS

 Concatenated Message:

 The whole data will be separated into several sections.

The diagram below shows the data format for a concatenated message received by calling
read_com(). The data length is the number of octets of data.

 Example:

#<0x40><0x02><0x02><0x0d><0x0a>20050401140506+32<0x0d><0x0a>

+886920123456<0x0d><0x0a><0x0A>HelloHello

98

CipherLab C Programming Part II

nwrite_com data format

For sending a message, the maximum length is limited to 255 characters.

 For long messages (see Message Type - Concatenated Message above), data will be sent
successfully by using nwrite_com(), and then each message will be separated into sections
intentionally.

 The sending data buffer will not be overwritten until com_eot (3) returns 1 to indicate the
transmission is completed.

The data format for sending a message is as shown below.

Example: 0920123456<0x0d><0x0a><0x0A>HelloHello

 99

 Chapter 6 GSM/GPRS

6.2 SECURITY

PIN (Personal Identity Number) is a 4-8 digit access code which can be used to secure
your SIM card from use. If the wrong PIN is entered in more than three times, the SIM
card will be locked. PUK (Personal Unblocking Key) is an 8-digit code used to unlock the
PIN code if your SIM card is blocked. Contact your service provider for PUK. If the wrong
PUK is entered ten times in a row, the device will become permanently blocked and
unrecoverable, requiring a new SIM card.

6.2.1 PIN PROCEDURE

http://en.wikipedia.org/wiki/SIM_card
http://en.wikipedia.org/wiki/SIM_card

100

CipherLab C Programming Part II

6.2.2 PUK PROCEDURE

 101

 Chapter 6 GSM/GPRS

6.3 GSM PROGRAMMING FLOW

102

CipherLab C Programming Part II

6.4 STRUCTURE

6.4.1 GSMCONFIG STRUCTURE (GSM/GPRS)

Use GetNetParameter() and SetNetParameter() to change the settings by index.
Refer to Appendix II — Net Parameters by Index.

typedef struct {

 unsigned char SMServiceCenter[21];

 unsigned char PINCode[9];

 unsigned char GPRSAccessPoint[21];

 unsigned char NET[21];

 unsigned char ModemDialNum[21];

 GPRS_FLAG Flag;

 char CHAPPassword[33];

 char CHAPUserName[33];

 char ReservedByte[95];

} GSMCONFIG;

Parameter Default Description Index

unsigned char SMService
Center[21]

Null Current address of SMSC (Short Message
Service Center) stored on SIM card

60

unsigned char PINCode[9] Null PIN (Personal Identity Number) code of SIM
card; an access code of 4~8 digits

61

unsigned char
GPRSAccessPoint[21]

Null AP name for GPRS 62

unsigned char NET[21] Null Name of GSM network operator 63

unsigned char
ModemDialNum[21]

Null Phone number of the receiver of GSM data
service

64

GPRS_FLAG Flag --- See GPRS_FLAG Structure 65

char CHAPPassword[33] Null Password for Challenge Handshake
Authentication Protocol (CHAP)

66

char CHAPUserName[33] Null User name for Challenge Handshake
Authentication Protocol (CHAP)

67

char ReservedByte[95] Null Reserved ---

 103

 Chapter 6 GSM/GPRS

6.4.2 GPRS_FLAG STRUCTURE

typedef struct {

 unsigned int CHAPEnable: 0;

 unsigned int Reservedflag: 15;

} GPRS_FLAG;

Parameter Bit Default Description Index

unsigned int CHAPEnable 15 0 Challenge Handshake Authentication
Protocol

0: disable

1: enable

65

unsigned int Reservedflag 0-14 Null Reserved ---

104

CipherLab C Programming Part II

6.4.3 GSMSTATUS STRUCTURE (GSM/GPRS)

User program must explicitly call CheckNetStatus() to get the latest status. Refer to
Appendix III — Net Status by Index.

typedef struct {

 int GSMstatus;

 int GSMRSSIlevel;

 int PINstatus;

 int Reserved[9];

} GSMSTATUS;

Parameter Description Value Index

int GSMstatus Connection State 0

1

GSMGPRS_DISCONNECTED

GSMGPRS_CONNECTED

11

int GSMRSSIlevel GSM/GPRS RSSI
Signal Level

0

1

2

...

(3 ~ 29)

30

31

99

-113 dbm or less

-111 dbm

-109 dbm

...

(+2 dbm per increment)

-53 dbm

-51 dbm or greater

Not known or not detectable

12

int PINstatus GSM/GPRS PIN
Code Status

0

1

Disabled

PIN code required

13

int Reserved[9] Reserved Null --- ---

 105

 Chapter 6 GSM/GPRS

6.5 FUNCTIONS

6.5.1 PIN-RELATED

GSMChangePINCode 8790

Purpose To change the PIN code of your SIM card.

Syntax int GSMChangePINCode (const char *old, const char *new);

Example reval = GSMChangePINCode(PIN1, PIN2);

 // change PIN code from PIN1 to PIN2

Return Value Return Value

1 PINCODE_PASSED The new PIN code has been accepted.

0 INVALID_PINCODE The old PIN code is incorrect.

-1 MODULE_RUNNING The GSM/GPRS module is running.

-2 HARDWARE_ERR Hardware error occurs.

-3 CONNECT_TIMEOUT The request times out.

Remarks This routine cannot be executed while the GSM/GPRS module is running.

 The old PIN string must be the original or the current PIN code. In this
case, the new PIN code can be adopted and the remaining attempt counter
of PIN will be reset to 3.

 If the old PIN code is wrong, not only it cannot be changed successfully,
but also the counter will be decremented by 1.

See Also GSMCheckPINCode, GSMSetPINCodeLock

GSMCheckPINCode 8790

Purpose To verify the input PIN code.

Syntax int GSMCheckPINCode (const char *pincode);

Example reval = GSMCheckPINCode(PINarray); // check if PIN code is correct

Return Value Return Value

2 PINCODE_UNNECESSARY No PIN code is required.

1 PINCODE_PASSED The new PIN code has been accepted.

0 INVALID_PINCODE The old PIN code is incorrect.

-1 MODULE_RUNNING The GSM/GPRS module is running.

-2 HARDWARE_ERR Hardware error occurs.

-6 PUK_REQUIRED The PUK procedure is required.

Remarks This routine cannot be executed while the GSM/GPRS module is running.

 If the input code is the correct PIN code, the remaining attempt counter of
PIN is reset to 3.

 If the old PIN code is wrong, the counter will be decremented by 1.

See Also GSMChangePINCode, GSMSetPINCodeLock

106

CipherLab C Programming Part II

GSMSetPINCodeLock 8790

Purpose To decide whether to lock the SIM card or not.

Syntax int GSMSetPINCodeLock (const char *pincode, int mode);

Parameters const char *pincode

The current PIN code of your SIM card.

int mode

0 Unlock the SIM card

1 Lock the SIM card

Example reval = GSMSetPINCodeLock(codeA, 1);

 // lock the SIM card, using PIN code “codeA”

Return Value Return Value

1 PINCODE_PASSED The new PIN code has been accepted.

0 INVALID_PINCODE The old PIN code is incorrect.

-1 MODULE_RUNNING The GSM/GPRS module is running.

-2 HARDWARE_ERR Hardware error occurs.

-3 PINALREADY_LOCKED The PIN code has already been locked.

-4 PINALREADY_UNLOCKED The PIN code has already been unlocked.

-5 CONNECT_TIMEOUT The request times out.

Remarks This routine cannot be executed while the GSM/GPRS module is running.

 For a locking or unlocking process, the correct PIN code is required.
Otherwise, it will fail and the remaining attempt counter will be
decremented by 1.

See Also GSMChangePINCode, GSMCheckPINCode

 107

 Chapter 6 GSM/GPRS

6.5.2 GSM SIGNAL QUALITY (RSSI)

GSMModemGetRSSI 8790

Purpose To get the RSSI value while in a GSM_Modem connection.

Syntax int GSMModemGetRSSI (void);

Example reval = GSMModemGetRSSI();

Return Value Return Value

0 ~ RSSI value

-1 GSM Modem is not connected.

-2 Data connection cannot be suspended.

-3 Cannot resume data connection.

Remarks This function is used to get the RSSI value during a GSM data connection.
The online data connection will be suspended for a few seconds in order to
get the RSSI value. Therefore, data communications are disabled during
this period of time.

 The returned RSSI value will be automatically copied to the member
GSMRSSIlevel in the GSMSTATUS structure, which can be obtained via
CheckNetStatus(GSM_RSSIQuality).

108

CipherLab C Programming Part II

 109

Acoustic coupler is used with 8000/8300 for transmitting serial data stream from the
mobile computer to a host computer via COM2. Refer to Appendix IV — Examples.

The system does not allocate any transmit buffer. It simply records the pointer of the
string to be sent. The transmission stops when a null character (0x00) is encountered.
The application program must allocate its own transmit buffer and not to modify it during
transmission. Below is the tone pattern in use.

Modem parameter

Modem Mode: V23mode or Bell202 mode

Data Bits: 7 or 8

Parity: Even, Odd, or None

Stop Bit: 1

Character Delay: 0~127

DTMF arameters
Modem Mode: DTMF mode

Character Delay 0~15

Character Gap 0~15

IN THIS CHAPTER

7.1 Operation Modes ... 110
7.2 Functions ... 111

Chapter 7
ACOUSTIC COUPLER

110

CipherLab C Programming Part II

7.1 OPERATION MODES

7.1.1 MODEM MODE

Two types of Modem mode, V23 and Bell 202, are supported in the acoustic coupler
library. In the Modem mode, the content of string is the data sent to the remote
computer.

 In the V23 mode, the mark frequency is 2.1 kHz and the space frequency is 1.3 kHz.
 In the Bell 202 mode, the mark frequency is 2.2 kHz and the space frequency is 1.2

kHz.

Data
N

Data
N+1Tone(0) Tone(0)Tone(0) Tone(0)

Data String Data StringCharacter Dealy Character DealyCharacter Dealy

7.1.2 DTMF MODE

DTMF (dual-tone multi-frequency) mode is supported to dial out to a remote computer
through the DTMF voice generated by the mobile computer. In the DTMF mode, the
content of string should be phone number.

Character Delay Character GapCharacter Gap

Phone Number
N

Phone Number
N+1

Character Delay Character Gap

 111

 Chapter 7 Acoustic Coupler

7.2 FUNCTIONS

open_com

Purpose To enable a specific COM port and initialize communications.

Syntax int open_com (int com_port, int setting);

Parameters int com_port

COM2 is used for Acoustic Coupler on 8000/8300. Refer to the COM Port
Mapping table.

int setting

Modem mode

0x0000

0x8000

STOP_BIT1

STOP_BIT2

Stop bit

0x00--

0x01--

……

0x7F--

Character Delay One character delay is approx. 10
ms.

The range of character delay is 0
to 127.

0x00

0x40

0x80

BELL202MODE

V23MODE

DTMFMODE

Modem mode type

0x00

0x10

0x30

PARITY_NONE

PARITY_ODD

PARITY_EVEN

Parity

0x00

0x08

DATA_BIT7

DATA_BIT8

Data bits

0x00

0x01

0x02

0x03

AC_VOL0

AC_VOL1

AC_VOL2

AC_VOL3

Acoustic coupler's volume

DTMF mode (old module doesn’t support)

0x0---

0x1---

……

0xF---

Character Gap One character gap is approx. 25
ms.

The range of character gap is 0 to
15.

0x-0--

0x-1--

……

0x-F--

Character Delay One character delay is approx. 25
ms.

The range of character delay is 0
to 15.

112

CipherLab C Programming Part II

 0x80

0x00

0x01

0x02

0x03

DTMFMODE

AC_VOL0

AC_VOL1

AC_VOL2

AC_VOL3

DTMF mode type

Acoustic coupler's volume

Example open_com(2, 0x000b);

// open COM 2 to V23, AC_VOL3, 8 data bits, 1 stop bit, no parity and
no character delay

open_com(2, 0x8280);

// open COM 2 to DTMF mode, AC_VOL0, 8 character delay, and 2 character
gap.

Return Value If successful, it returns 1. (old Acoustic module)

If successful, it returns 2. (new Acoustic module)

Otherwise, it returns 0 to indicate the port number is invalid.

Remarks This routine initializes the specific COM port, clears its receive buffer, stops any
ongoing data transmission, resets COM port status, and configures the COM
port according to the settings.

See Also close_com, SetACTone, SetCommType

 113

 Chapter 7 Acoustic Coupler

SetACTone 8020, 8021, 8320

Purpose To set the dial tone pattern of the acoustic coupler.

Syntax void SetACTone (int startspace, int startmark, int endmark);

Parameters The acoustic coupler is used for transmitting serial data stream in a tone
pattern that starts at a space (startspace) followed by a mark (startmark), and
then the data, and finally ends with another mark (endmark).

Those parameter has default value –

 startspace : 1000

 startmark : 600

 endmark : 600

Example SetACTone(1000, 600, 600);

Return Value None

Remarks This routine sets the dial tone pattern of the acoustic coupler.

Note that each parameter is provided in units of 5 milli-seconds.

See Also open_com, SetCommType

114

CipherLab C Programming Part II

nwrite_com

Purpose To send a number of characters through a specific COM port.

Syntax int nwrite_com (int port, char *s, int count);

Parameters int port

COM2 is used for Acoustic Coupler. Refer to the COM Port Mapping table.

char *s

Modem mode – pointer to the string being sent out.

DTMF mode (old module doesn’t support) – pointer to the phone number
being dialed out.

Number to be dialed Low Frequency (Hz) High Frequency (Hz)

‘1’ 697 1209

‘2’ 697 1336

‘3’ 697 1477

‘4’ 770 1209

‘5’ 770 1336

‘6’ 770 1477

‘7’ 852 1209

‘8’ 852 1336

‘9’ 852 1477

‘0’ 941 1336

‘*’ 941 1209

‘#’ 941 1477

‘A’ 697 1633

‘B’ 770 1633

‘C’ 852 1633

‘D’ 941 1633

int count

The number of characters to be sent.

Example char s[]={“Hello\n”};

nwrite_com(2, s, 2); // send the string “He” through COM2

char phone[]={“86471166”}

write_com(2, phone, 2); // send “86” through COM2

Return Value If successful, it returns the character count.

Otherwise, it returns 0.

Remarks This routine sends the characters of a string one by one until the specified
number of characters are sent out.

See Also write_com

 115

 Chapter 7 Acoustic Coupler

write_com

Purpose To send a null-terminated string through a specific COM port.

Syntax int write_com (int port, char *s);

Parameters int port

COM2 is used for Acoustic Coupler. Refer to the COM Port Mapping table.

char *s

Modem mode – pointer to the string being sent out.

DTMF mode (old module doesn’t support) – pointer to the phone number
being dialed out. Refer to the table for nwrite_com().

Example char s[]={“Hello\n”};

write_com(2, s); // send the string “Hello\n” through COM2

char phone[]={“86471166”}

write_com(2, phone); // send the phone number through COM2

Return Value If successful, it returns 1.

Otherwise, it returns 0.

Remarks This routine sends a string through a specific COM port. If any prior
transmission is still in progress, it will be terminated and then the current
transmission resumes. The characters of a string will be transmitted one by one
until a NULL character is met.

Note that a null string can be used to terminate the prior transmission.

See Also nwrite_com

116

CipherLab C Programming Part II

 117

Below are available libraries that support (1) PPP connection over serial links, (2)
Ethernet connection (Transparent mode), and (3) GPRS connection (Transparent mode).
Refer to Appendix IV — Examples.

Hardware Configuration External Libraries Required

8000 Series

8000, 8001 – Batch 80PPP.lib

8062 – Bluetooth 80PPP.lib OR 80BNEP.lib

8071 – 802.11b/g 80PPP.lib OR 80WLAN.lib

8200 Series

8230 – Bluetooth + 802.11b/g ---

8260 – Bluetooth ---

8300 Series

8300 – Batch 83PPP.lib

8330 – Bluetooth + 802.11b/g 83PPP.lib OR 83NetCombo.lib

8362 – Bluetooth 83PPP.lib OR 83BNEP.lib

8370 – 802.11b/g 83PPP.lib OR 83WLAN.lib

8400 Series

8400 – Bluetooth 84PPP.lib

8470 – Bluetooth + 802.11b/g 84PPP.lib OR 84WLAN.lib

8500 Series

8500 – Bluetooth ---

8570 – Bluetooth + 802.11b/g ---

8700 Series

8700 – Bluetooth ---

8770 – Bluetooth + 802.11b/g ---

8790 – Bluetooth + 802.11b/g +
3.5G

Note: GPRS (Transparent mode) is currently supported on 8400, with use of GPRS
Cradle. Cradle firmware must be version 1.01 or later.
 (1) 84PPP.lib should be version 1.03 or later.
 (2) 8400WLAN.lib should be version 1.04 or later.

Chapter 8
MODEM, ETHERNET & GPRS CONNECTION

118

CipherLab C Programming Part II

IN THIS CHAPTER

8.1 PPP via Modem Cradle/RS-232 119
8.2 Ethernet via Cradle ... 121
8.3 GPRS via Cradle .. 122

 119

 Chapter 8 Modem, Ethernet & GPRS Connection

8.1 PPP VIA MODEM CRADLE/RS-232

PPP, short for Point-to-Point Protocol, is a method of connecting the mobile computer to
the Internet over serial links. It sends TCP/IP packets to a server that connects to the
Internet.

PPP Connection via Modem Cradle

It is supported when making use of the proprietary modem cradle. For baud rate setting, any
value other than 57600 bps (default) must be configured through the DIP switch of the IR control
board.

Note: For 8000/8300 Series, the version of IR control board on the modem cradle must
be greater than SV3.01.

PPP Connection via RS-232

It is supported on 8200/8300/8400/8700 only when being connected to a generic modem (direct
RS-232).

120

CipherLab C Programming Part II

8.1.1 PPPCONFIG STRUCTURE

Use GetNetParameter() and SetNetParameter() to change the settings by index.
Refer to Appendix II — Net Parameters by Index.

typedef struct {

 unsigned char DialUpPhone[20];

 unsigned char LoginName[41];

 unsigned char LoginPassword[20];

 int ComBaudRate;

 unsigned char ReservedByte[17];

} PPPCONFIG;

Parameter Default Description Index

unsigned char
DialUpPhone[20]

Null Phone number of ISP 70

unsigned char
LoginName[41]

Null Login user name of ISP 71

unsigned char
LoginPassword[20]

Null Login password of ISP 72

int ComBaudRate 0x00 Baud rate matching modem cradle or modem
(cf. open_com)

73

unsigned char
ReservedByte[17]

Null Reserved ---

Follow the same programming flow of WLAN Example (802.11b/g). Before calling
NetInit(4L) or NetInit(5L), the following parameters of PPP must be specified.

Index Default Description

70 P_PPP_DIALUPPHONE [20] Null Phone number of ISP

71 P_PPP_LOGINNAME [41] Null Login user name of ISP

72 P_PPP_LOGINPASSWORD [20] Null Login password of ISP

73 P_PPP_BAUDRATE 0x00 Baud rate matching modem cradle or modem

Note: For the baud rate values of IR or RS-232, see the baud rate setting in open_com.

 121

 Chapter 8 Modem, Ethernet & GPRS Connection

8.2 ETHERNET VIA CRADLE

It is supported when making use of the proprietary Ethernet cradle. First, configure the
Ethernet cradle to work in “Transparent” mode. Then, follow the same programming flow
of WLAN Example (802.11b/g) using NetInit(6L).

Refer to the Ethernet Cradle manual for more information on the working modes.

122

CipherLab C Programming Part II

8.3 GPRS VIA CRADLE

8.3.1 GSMCONFIG STRUCTURE

Use GetNetParameter() and SetNetParameter() to change the settings by index.
Refer to Appendix II — Net Parameters by Index.

typedef struct {

 unsigned char Reserved_1[51];

 unsigned char NET[21];

 unsigned char Reserved_2[21];

 GPRS_FLAG Flag;

 char CHAPPassword[33];

 char CHAPUserName[33];

 char ReservedByte[95];

} GSMCONFIG;

Parameter Default Description Index

unsigned char

Reserved_1[51]

Null Reserved ---

unsigned char NET[21] Null Name of GSM network operator 63

unsigned char

Reserved_2[21]

Null Reserved ---

GPRS_FLAG Flag --- See GPRS_FLAG Structure 65

char CHAPPassword[33] Null Password for Challenge Handshake
Authentication Protocol (CHAP)

66

char CHAPUserName[33] Null User name for Challenge Handshake
Authentication Protocol (CHAP)

67

char ReservedByte[95] Null Reserved ---

 123

 Chapter 8 Modem, Ethernet & GPRS Connection

8.3.2 GPRS_FLAG STRUCTURE

typedef struct {

 unsigned int CHAPEnable: 0;

 unsigned int Reservedflag: 15;

} GPRS_FLAG;

Parameter Bit Default Description Index

unsigned int CHAPEnable 15 0 Challenge Handshake Authentication
Protocol

0: disable

1: enable

65

unsigned int Reservedflag 0-14 Null Reserved ---

It is supported when making use of 8400 GPRS Cradle. Use AT commands to configure
PIN code and GPRS AP name. Then, follow the same programming flow of WLAN Example
(802.11b/g) using NetInit(7L). It fails to initialize a connection in the following
conditions: (1) PIN code and GPRS AP name are not configured correctly via AT
commands, and (2) CHAP settings are not configured correctly on 8400.

Refer to the 8400 GPRS Cradle manual for more information on the working modes.

124

CipherLab C Programming Part II

 125

Applications are to read and/or write data via a virtual COM port, namely, COM5. The
communication types, COMM_USBHID, COMM_USBVCOM, COMM_USBVCOM_CDC and
COMM_USBDISK, should be assigned by calling SetCommType() before use.

Refer to Appendix IV — Examples.

IN THIS CHAPTER

9.1 Overview ... 126
9.2 Structure ... 127

Chapter 9
USB CONNECTION

126

CipherLab C Programming Part II

9.1 OVERVIEW

9.1.1 USB HID

For 8200/8400/8700 Series, it can be set to work as an input device, such as a keyboard
for a host computer.

9.1.2 USB VIRTUAL COM

USB Virtual COM
For 8200/8400/8700 Series, when USB Virtual COM is in use, it is set to use one Virtual COM port
for all (USB_VCOM_FIXED) whenever connecting more than one mobile computer to PC via USB.
This setting requires you to connect one mobile computer at a time, and will facilitate configuring a
great amount of 8200/8400/8700 mobile computers via the same Virtual COM port (for
administrators’ or factory use). If necessary, you can have it set to use variable Virtual COM port
(USB_VCOM_BY_SN), which will vary by the serial number of each different mobile computer.

USB Virtual COM_CDC

For 8200/8700 Series, when USB Virtual COM_CDC is in use, it is set to use one Virtual COM_CDC
port for all (USB_VCOM_FIXED) whenever connecting more than one mobile computer to PC via
USB. This setting requires you to connect one mobile computer at a time, and will facilitate
configuring a great amount of mobile computers via the same Virtual COM_CDC port (for
administrators’ or factory use). If necessary, you can have it set to use variable Virtual COM_CDC
port (USB_VCOM_BY_SN), which will vary by the serial number of each different mobile computer.

9.1.3 USB MASS STORAGE DEVICE

When 8200/8400/8700 Series is equipped with SD card and connected to your computer
via the USB cable, it can be treated as a removable disk as long as it is configured
properly through programming or System Menu.

 127

 Chapter 9 USB Connection

9.2 STRUCTURE

9.2.1 USBCONFIG STRUCTURE

Use GetNetParameter() and SetNetParameter() to change the settings by index.
Refer to Appendix II — Net Parameters by Index.

struct USBCONFIG {

USB_FLAG1 Flag1;

unsigned char ReservedByte[126];

};

Parameter Default Description Index

USB_FLAG1 Flag1 --- See USB_FLAG1 Structure 80

unsigned char
ReservedByte[126]

Null Reserved ---

9.2.2 USB_FLAG STRUCTURE

typedef struct {

unsigned int CommBySerial: 1;

unsigned int Reservedflag: 15;

} USB_FLAG1;

Parameter Bit Default Description Index

unsigned int CommBySerial 0 0 USB Virtual COM

0: USB_VCOM_FIXED

1: USB_VCOM_BY_SN (= Port No.

change with serial number)

80

unsigned int Reservedflag 1-15 0 Reserved ---

128

CipherLab C Programming Part II

 129

8700 supports GPS functionality as long as the GPS module is present. The information
on GPS speed, latitude, longitude and altitude is not confirmed until the return value of
GPS status becomes 1.

IN THIS CHAPTER

10.1 Structure ... 130
10.2 Functions ... 131

Chapter 10
GPS FUNCTIONALITY

130

CipherLab C Programming Part II

10.1 STRUCTURE

10.1.1 GPSINFO STRUCTURE

Use GetGpsInfo() to access the GPS information.

typedef struct {

unsigned char Status;

unsigned int Speed;

unsigned char Latitude[11];

unsigned char Longitude[12];

unsigned char SNR;

unsigned char SatelliteNum;

int Altitude;

} GPSINFO;

Member Description

unsigned char Status 0: invalid data (= not positioned yet)

1: valid data (= positioned)

unsigned int Speed Your speed when heading toward a target (relative speed, km/h)

unsigned char Latitude[11] Your location on earth by latitude coordinates (N for North, S for
South)

 ddmm.mmmmN or ddmm.mmmmS

 For example, 1211.1111N means 12° 11’ 6.67” North.

unsigned char
Longitude[12]

Your location on earth by longitude coordinates (E for East, W for
West)

 dddmm.mmmmE or dddmm.mmmmW

 For example, 2326.2141E means 23° 26’ 12.85” East.

unsigned char SNR Signal to Noise ratio, average (dB)

unsigned char SatelliteNum Number of satellites found

int Altitude Your location on earth by altitude (meters)

 131

 Chapter 10 GPS Functionality

10.2 FUNCTIONS

GetGpsInfo 8700

Purpose To get GPS information.

Syntax unsigned char GetGpsInfo (void *buf, unsigned char index) ;

Parameters void *buf

Pointer to a buffer where information is stored.

unsigned char index

1 GPS_STATUS The information on GPS speed, latitude,
longitude and altitude is not confirmed until
the return value of GPS_STATUS becomes
1.

2 GPS_SPEED

3 GPS_LATITUDE

4 GPS_LONGITUDE

5 GPS_SNR

6 GPS_SATELLITE_NUM

7 GPS_ALTITUDE

Example unsigned char buf[13];

GetGpsInfo(buf, GPS_LATITUDE);

Return Value If successful, it returns 1.

Otherwise, it returns 0 to indicate the GPS functionality is not enabled yet.

StartGps 8700

Purpose To enable GPS functionality.

Syntax void StartGps (void);

Example StartGps();

Return Value None

StopGps 8700

Purpose To disable GPS functionality.

Syntax void StopGps (void);

Example StopGps();

Return Value None

132

CipherLab C Programming Part II

 133

File Transfer Protocol (FTP), which runs over Transmission Control Protocol (TCP), is used
to transfer files over any network that supports TCP/IP regardless of operating systems.
The FTP functions provided here are for the 8000/8200/8300/8400/8700 Mobile
Computers to log in to any FTP server and log out over network. During a valid session,
the mobile computer can issue commands to the server to perform a specific task, such
as create, change or remove directories on the server, delete, upload or download files,
etc.

In this chapter, we explain the basics of establishing an FTP connection via the DoFTP
function and scripts. For use of separate FTP functions, please refer to 11.4 Advanced
FTP Functions. If file transfer is desired with the default working directory on the FTP
server, use the DoFTP function to automatically do the same task performed by calling
FTPOpen(), FTPSend(), FTPRecv(), FTPDelete(), FTPRename() and finally
FTPClose(). That is, it will start a process to open a connection, log on to the host,
upload and/or download files, and then close the connection.

Note: Only one connection is allowed at a time.

Chapter 11
FTP FUNCTIONALITY

DoFTP

Open connection:
 Priority 1 - Use DoFTP arguments.

Host IP address and login username
are required.

 Priority 2 - Run script file if arguments are
missing in DoFTP.

 Priority 3 - Follow FTP_SETTINGS structure if no
related script.

Run script file to
send/receive
files.

FTPRename

FTPDelete

FTPOpen

FTPSend

FTPRecv

FTPClose

134

CipherLab C Programming Part II

Include File

All programs that call TCP/IP/FTP stack routines need to contain the following include statement.

#include <8xxxlib.h>

#include <8xtcpip.h>

#include <FTPDirect.h>

This header files, “8xtcpip.h” and “FTPDirect.h”, contain the function prototypes (declarations) and
error code definitions. These files should normally be placed under the “include” directory of the C
compiler - C:\C_Compiler\INCLUDE\

Library File

Any FTP application written in C language requires a number of libraries specific to the mobile
computer that is capable of wireless connectivity:

Mobile Computer FTP Library TCP/IP Library Standard Library

8071 8xFTP.lib 80WLAN.lib

Version 2.07 or later

8000lib.lib

Version 4.14 or later

8230 --- --- 8200lib.lib

Version 1.00 or later

8330, 8370 8xFTP.lib 83WLAN.lib

Version 3.05 or later

8300lib.lib

Version 4.08 or later

8470 8xFTP.lib

8xFTP_SD.libNote

84WLAN.lib

Version 1.06 or later

8400lib.lib

Version 1.07 or later

8770, 8790 --- --- 8700lib.lib

Version 1.00 or later

These files should be specified in the linker file of the user program. The linker program will search
for the TCP/IP/FTP Networking routines during linking process. These files should normally be
placed under the “lib” directory of the C compiler — C:\C_Compiler\LIB\

An extern array szFTPDirectVersion[], which is declared in the header file “FTPDirect.h”, keeps
version information of FTP library.

Note: For 8400, the support of FTP connection with access to SD card is available only
when 8xFTP_SD.lib is in use.

 135

 Chapter 11 FTP Functionality

Link File

Below is an example of link file (partial).

/*** Link File ***/

 -lm -lg -ll

 tnet.rel

 8xftp.lib

 84wlan.lib

 8400lib.lib

 c900ml.lib

Note: The four library files must be in the above sequence. That is, “8xFTP.lib” must be
specified first, then “8xWLAN.lib”, “8xxxlib.lib”, and finally the standard C library
file “c900ml.lib”.

IN THIS CHAPTER

11.1 Using DoFTP Function .. 136
11.2 Editing Script File .. 140
11.3 Structure ... 149
11.4 Advanced FTP Functions ... 150
11.5 File Handling... 161
11.6 SD Card Access ... 163

136

CipherLab C Programming Part II

11.1 USING DOFTP FUNCTION

11.1.1 FUNCTION

DoFTP 8000, 8200, 8300, 8400, 8700

Purpose To automatically do the same task performed by calling FTPOpen(), FTPSend(),
FTPRecv(), FTPDelete(), FTPRename(), and finally FTPClose().

Syntax int DoFTP (char IFMode,

 char *HostIP,

char *Username,

char *Password,

char *Port);

Parameters char IFMode

via802dot11 802.11b/g

viaEthernetCradle Ethernet Cradle (8200 only)

via3dot5G 3.5G (8700 only)

char *HostIP

Pointer to a buffer where the IP address of FTP server is stored.

char *Username

Pointer to a buffer where the username string is stored (Max. 64 characters).

char *Password

Pointer to a buffer where the password string is stored (Max. 64 characters).

char *Port

Pointer to a buffer where the remote port number is stored.

 By default, TCP port 21 is used on the server for the control connection.

Example DoFTP (via802dot11, (char *)"192.168.17.6", (char *)"test4669", (char
*)"1234", (char *)"21");

Return Value If successful, it returns 0.

On error, it returns a non-zero value to indicate a specific error condition.

Return Value

-1 FTPOpen failed, or another DoFTP is running

-2 Failed to update or receive FTP.dat, or failed to get parameters
from the script file

-3 Failed to resolve hostname to binary IP address

-4 Failed to connect to host

-5 Incorrect username

-6 Incorrect password

-7 Failed to switch to a different server specified in the new script
file.

 137

 Chapter 11 FTP Functionality

 -8 Failed to update program(s)

-10 Failed to set binary transfer mode

-20 Host IP is empty

-21 Username is empty

-1001~

-1999

Failed to transmit or receive files

 The last 3 digits refer to a total number of files, e.g.
“-1003” means it failed to transmit or receive 3 files

Remarks When successfully connected to the server and no script file is found on the
mobile computer, it will check for any script file on the server. When available,
it will download the file for immediate use.

Refer to Appendix V — FTP Response & Error Code.

 FTP messages are are stored in the global array szFTPReplyCode[256].

 For DoFTP(), the messages are stored in the global array
szFTPResponseTbl[1024]. If an error occurs, the error code will be
appended to the message, indicating the error condition encountered.

138

CipherLab C Programming Part II

11.1.2 LOG

For the various activities performed by DoFTP(), it maintains a history of all the results
and saves to the array szFTPResponseTbl[DOFTP_RECORD_SIZE(1024)]. When the buffer
is entirely full, the array will be cleared before saving more recent entries. When there is
another attempt of DoFTP(), the array will be cleared as well.

Log Format

Action:Para1:Para2:Para3:Result

Event Action Parameter Example

Establish a connection… E Para1: IP

Para2: Username

Para3: Password

Success:

E:192.168.6.24:UserTest:1234:O

Failure:

E:192.168.6.24:UserTest:1234:X

Login… L Para1: IP

Para2: Username

Para3: Password

Success:

L:192.168.6.24:UserTest:1234:O

Failure:

L:192.168.6.24:UserTest:1234:X

Switch to another server… W Para1: IP

Para2: Username

Para3: Password

Success:

W:192.168.6.1:UserTest:1234:O

Failure:

W:192.168.6.24:UserTest:1234:X

E:192.168.6.24:UserTest:1234:X

OR

W:192.168.6.24:UserTest:1234:X

L:192.168.6.24:UserTest:1234:X

Get IP from script file… P Para1: IP

Para2: Username

Para3: Password

Success:

P:192.168.6.1:UserTest:1234:O

Failure:

P:192.168.6.1:UserTest:1234:X

Upload files to server… S Para1: Local file
name

Para2: Remote
file name

Success:

S:test:test20000111061852.txt::O

Failure:

S:test:testCipherlab.txt::X

Download files from server… R Para1: Local file
name

Para2: Remote
file name

Success:

R:test:FTPTest/test.txt::O

Failure:

R:test:FTPTest/test.txt::X

 139

 Chapter 11 FTP Functionality

Network initialization… I No parameters Success: I::::O

Failure: I::::X

Update the script file… U Success: U::::O

Failure: U::::X

Get directory information… D Success: D::::O

Failure: D::::X

Delete files from the FTP
server

d Para2: Remote
file name

Success:

d::FTPTest/test.txt::O

Failure:

d::FTPTest/test.txt::X

Rename the files on the FTP
server

r Para1: New file
name

Para2: Old file
name

Success:

r:test:FTPTest/test.txt::O

Failure:

r:test:FTPTest/test.txt::X

140

CipherLab C Programming Part II

11.2 EDITING SCRIPT FILE

The script must be saved to the file FTP.dat in the following format.

 If connection arguments (ServerIP, TCPport, Username, and Password) are passed to
the DoFTP function, it will run the script file to send and/or receive files after
establishing an FTP session successfully.

 If no arguments received, the DoFTP function will run the script file to establish an
FTP session and transfer files accordingly.

File Name
FTP.dat /*

** The file name “FTP.dat” is reserved for the
** script file. Do not use it with “rFile=” or
** “tFile=”. Because it is hard-coded, the file
** name must be uppercase while the file
** extension must be lowercase.

*/

Format

ServerIP=

TCPport=

Username=

Password=

UpdateScript,<Version control>,<Mandatory>

rFile=<Local file name1>,<Remote file name>,<Version control>,<Mandatory>

rFile=<Local file name2>,<Remote file name>,<Version control>,<Mandatory>

rFile=<Local file name3>,<Remote file name>,<Version control>,<Mandatory>

…

tFile=<Local file nameX>,<Remote file name>,0,<Mandatory>

rFile=<Local file name10>,<Remote file name>,<Version control>,<Mandatory>

…

 141

 Chapter 11 FTP Functionality

Example

ServerIP=192.168.17.6

TCPport=21

Username=test4669

Password=1234

UpdateScript,1,M

rFile=Rcv1.txt,Lookup1.txt,0,

rFile=Rcv2.txt,Lookup2.txt,1,

rFile=Rcv3.txt,Lookup3.txt,1,

…

tFile=A:/TestFile,Txac,0, /* For 8200/8400/8700, access to SD is allowed */

…

tFile=Send1,Txac_test,0,

rFile=Send1,Txac_test,-1,

/* Upload and delete the file. Remote file name is ignored */

…

tFile=,Lookup4.txt,-1,

/* deletes the Lookup4.txt from the FTP server, function currently available for 8200
and 8400 only */

…

tFile=Lookup6,Lookup5,-2,

/* renames the Lookup5 on the FTP server to “Lookup6”, function currently available
for 8200 and 8400 only */

Line Default Description

ServerIP= Null IP address of FTP server

TCPport= Null Remote port number

 By default, TCP port 21 is used on the server for the
control connection.

Username= Null User name for logging onto FTP server

Password= Null Password for logging onto FTP server

Check whether new script file is available.
When there is no script file on the server, stop
running script.

142

CipherLab C Programming Part II

UpdateScript, … Null “UpdateScript,(1/0)” is required for checking updates to
the script file, with given version control. This line must be
run before transmitting or receiving files.

 If a different server is specified, it will connect to the
new server in the next connection.

 If you need to switch to a different server immediately,
use the SWITCH command.

rFile= Null Receive a specific file with given version control

 Local file name: With or without file extension included,
it cannot exceed 8 characters, case-sensitive.

 Remote file name: It must follow the rules of the file
system used by FTP server. Wild card is supported.

 User program update is allowed when the file name is
prefixed with the character “~”. Also, version control
will be ignored.

tFile= Null Transmit a specific file with version control set off

 local file name: Whether including file
extension or not, a local file
name must not exceed 8
characters and must be
case-sensitive.

 remote file name: Such name must follow the
remote FTP server’s file
system’s rules. Wild card is
supported.

 Version control must be set to 0.

Delete a specific file from the FTP server
(for 8200, 8400 & 8700)

 The first parameter must be ignored.
 remote file name: Such name must follow the

FTP server’s file system’s
rule. Wild card is supported.

 Version control must be set to -1.

Rename a specific file on the FTP server
(for 8200, 8400 & 8700)

 new file name: The file name to replace the old
one.

 old file name The the file name to be replaced
by the new one.

 Version control must be set to -2.

Note: For 8200/8400/8700, access to SD card is allowed; however, file name is not
case-sensitive. Refer to 11.6 SD Card Access. Although file name may be
case-sensitive on remote host, for use with SD card, it is suggested to avoid using
letter case for identifying two files with identical file name, such as “AAA.txt” and
“aaa.txt”.

 143

 Chapter 11 FTP Functionality

11.2.1 REMOTE FILE INFORMATION

Upon completion of executing DoFTP() but before closing the connection, it will
automatically save remote file information to the file DIRList on the mobile computer.
Such up-to-date information lists file entries in the default working directory.

File Entry Format

Each entry is saved in the following format: YYYYMMDDhhmmss<file name>(0x0d)

It consists of

14 digits for the time when each file is created on the server.

A file name, which is case-sensitive and can be made up of 8 characters at most, with or without
file extension included. For example, “TestFile” and “Svr1.txt” are considered acceptable.

You may use FTPRecv() to save the remote file information to another file, whose file
entry format depends on where it is saved to. For example,

FTPRecv((char *)"FileList", (char *)"", (char *)"");

 /* Save to SRAM, file name is case-sensitive */

FTPRecv((char *)"A:\\FileList", (char *)"", (char *)"");

 /* For 8200/8400/8700, access to SD is allowed, file name is NOT case-sensitive */

11.2.2 LOCAL FILE INFORMATION

Upon completion of downloading a file via DoFTP(), it will automatically add or update
the entry to the file RCVList on the mobile computer.

File Entry Format

Each entry is saved in the following format:

YYYYMMDDhhmmss<file name>YYYYMMDDhhmmss(0x0d)

It consists of

14 digits for the time when each file is created on the server.

A file name, which is case-sensitive and can be made up of 8 characters at most, with or without
file extension included. For example, “TestFile” and “Rcv1.txt” are considered acceptable.

14 digits for the time when each file is downloaded to the mobile computer.

For 8200/8400/8700, access to SD card is allowed. Refer to 11.6 SD Card Access. The
entry in the file RCVList is in full path. For example,

YYYYMMDDhhmmssA:/FTP/Test/8X00.TXTYYYYMMDDhhmmss(0x0d)

YYYYMMDDhhmmssA:/FTP/Test/8X00.TXT00000000000000(0x0d)

144

CipherLab C Programming Part II

11.2.3 VERSION CONTROL

Version control only takes effect when the following two conditions are satisfied:

 The mobile compueter has started an FTP session via DoFTP() over network.
 The script line must start with “rFile=” or “UpdateScript”.

Version Control Description

0 Disable version control

 For the lines starting with “tFile=”, version control must be set to 0.

1 Enable version control

 Checks the local file information against the remote file information.

 For the lines starting with “rFile=”, if no existing file is found or the file
is not recorded in the file RCVList on the mobile computer, the version
control is ignored and the specified files are received.

 For the lines starting with “UpdateScript”, if no existing script file is
found on the mobile computer, version control is ignored and the
specified files are received.

-1
(for 8200 & 8400)

rFile:

Deletes files from the mobile computer

 For the lines starting with “rFile=” only. Any specified remote file
name will be ignored.

 The entry saved in the file RCVList will be modified:

from YYYYMMDDhhmmss<file name>YYYYMMDDhhmmss(0x0d)

to YYYYMMDDhhmmss<file name>00000000000000(0x0d)

tFile:

Deletes files from the FTP server

 any specified local file name will be ignored.

-2
(for 8200 & 8400)

Renames the files on the FTP server

 For the lines starting with “tFile=” only.

 145

 Chapter 11 FTP Functionality

11.2.4 MANDATORY FLAG

The flag is used to set a breakpoint. While running script, it may stop at a line with such
flag if it fails to transmit or receive the file. For example,

UpdateScript,1,M

tFile=Test.txt,SvrTest.txt,0,M

11.2.5 UPDATE SCRIPT FILE

“UpdateScript,(1/0)” is required for checking any update to the script file. This line
must be run before transmitting or receiving files.

Format

The line must be “UpdateScript,(1/0),<Mandatory>”.

When new script file is available, it will first update the script file, and then run the lines
in the new script file to transmit or receive files, as shown below.

Note: If a different server is specified in the new script, it will connect to the new server
in the next connection. If you need to switch to a different server immediately, use
the SWITCH command.

146

CipherLab C Programming Part II

11.2.6 UPDATE USER PROGRAM

Program update is allowed via DoFTP() when a user program (.bin) is properly specified
in the script file. Upon completion of executing DoFTP(), it will automatically update the
program.

Format

The line must be as shown below:

rFile=~<Local file name>,<Remote file name>,<version control>,<Mandatory>

For example,

rFile=~CipherAP,NewAP,0,

 /* Save to SRAM, local file name is case-sensitive */

rFile=~A:/FTP/user.bin,NewAP,0,

 /* For 8200/8400/8700, access to SD is allowed */

 /* Local file name is NOT case-sensitive */

On the right of the equal sign, it consists of

The character “~”.

A file name, which is case-sensitive and can be made up of 8 characters at most, with file
extension included. For example, “CipherAP” and “User.bin” are considered acceptable.

Version control; however, it will be ignored.

11.2.7 SWITCH TO A DIFFERENT SERVER

The “SWITCH” command is supported for immediate switching to a different server
specified in the new script file. This line must be run after the connection settings and
“UpdateScript”.

Format

The line must be “SWITCH”, all in uppercase.

When new script file is available, it will first update the script file, and then compare
whether the connection settings between the original script and the update are the same.

 When server IP or username is found different, it will disconnect the current
connection immediately, and use the updated connection settings to establish a new
connection.

 In the new connection, the “UpdateScript” line will not be executed until it connects
to the new server in the next connection.

 If it fails to execute the “SWITCH” command, it will stop executing the rest of lines
after “SWITCH”.

 If there is more than one “SWITCH” line, only the first one will be executed.

 147

 Chapter 11 FTP Functionality

11.2.8 WILDCARDS FOR REMOTE FILE NAME

Wildcard characters are supported for distinguishing the files transmitted from the mobile
computer to the FTP server.

 Start with a “%” character, followed by a capital letter: %T, %N or %I
 Only valid for remote file names
 Can be inserted to any place in the file name
 Can be applied multiple times and in combinations, as long as the actual file name

does not exceed 256 characters. If the file name becomes too long, it will be
truncated automatically. If it comes with a file extension, this will result in leaving it
out.

Three wildcards are supported for remote file names:

%T

Use “%T” to insert device system time (14 characters) to file name of the files transmitted to the
server.

%N

Use “%N” to insert device serial number (9 characters by factory default) to file name of the files
transmitted to the server.

%I

148

CipherLab C Programming Part II

Use “%I” to insert user-specified string (max. 16 characters) to file name of the files transmitted
to the server. Refer to 11.4.10 Wildcards for Remote File Name (User-Specified Sring)

Example

tFile=test,test%T.txt,0,M /* Remote file name, ex. test20000111061852.txt */

tFile=test,test%I.txt,0,M /* Remote file name, ex. testCipherlab.txt */

tFile=test,test%N.txt,0,M /* Remote file name, ex. testDB9001999.txt */

tFile=test,test%N+%I+%T.txt,0, /* Ex. testDB9001999+Cipherlab+20000111061905.txt */

 149

 Chapter 11 FTP Functionality

11.3 STRUCTURE

11.3.1 FTP_SETTINGS STRUCTURE

You may store the default connection settings to this structure.

Note: These settings are efficacious only when no arguments in DoFTP() and no script
for connection settings.

extern FTP_SETTINGS FtpConfig 8000, 8200, 8300, 8400, 8700

typedef struct {

 char ServerIP[254];

 char TCPport[8];

 char Username[65];

 char Password[65];

} FTP_SETTINGS;

Parameter Default Description

char ServerIP[254] Null IP address of FTP server, or a null-terminated hostname

 For hostname, the string

char TCPport[8] Null Remote port number

 By default, TCP port 21 is used on the server for the
control connection.

char Username[65] Null User name for logging on to FTP server

char Password[65] Null Password for logging on to FTP server

150

CipherLab C Programming Part II

11.4 ADVANCED FTP FUNCTIONS

Below lists the advanced FTP functions supported in separate external libraries. You may
use these functions to start an FTP session, instead of using the DoFTP() function.

 Call FTPOpen() to open a connection and log on to the host.
 Call FTPClose() to close the connection.
 Call FTPDir() to save remote file information in the current working directory to the

file DIRList on the mobile computer.
 Call FTPCwd() to change the current working directory.
 Call FTPSend() or FTPAppend() to upload files.
 Call FTPRecv() to download files.
 Call FTPDelete() to delete files from the FTP server.
 Call FTPRename() to rename the files on the FTP server.

 151

 Chapter 11 FTP Functionality

11.4.1 CONNECT: FTPOPEN

FTPOpen 8000, 8200, 8300, 8400, 8700

Purpose To open a connection and log on to the host network over wireless network
(802.11b/g). For 8200, it also supports connecting via Ethernet Cradle or
Bluetooth. See Bluetooth FTP example.

Syntax int FTPOpen (char *HostIP,

 char *Username,

char *Password,

unsigned int nPort);

Parameters char *HostIP

Pointer to a buffer where the IP address or hostname of FTP server is stored.
(Max. 253 characters for hostname)

 For 8200, use “0,0,0,0” for Bluetooth FTP connection.

char *Username

Pointer to a buffer where the username string is stored. (Max. 64 characters)

char *Password

Pointer to a buffer where the password string is stored. (Max. 64 characters)

unsigned int nPort

Pointer to a buffer where the remote port number is stored.

 By default, TCP port 21 is used on the server for the control connection.

 For 8200, use port 0 for Bluetooth FTP connection.

Example NetInit(); //select network via 801.11b/g

while(1){ //Check if initialization is done

 if (CheckNetStatus(NET_IPReady)) break;

 OSTimeDly(4);

}

FTPOpen((char *)"192.168.17.6", (char *)"test4669", (char *)"1234",
21); //log on to the ftp server

Return Value If successful, it returns 0.

On error, it returns a non-zero value to indicate a specific error condition.

Return Value

-3 Failed to resolve hostname to binary IP address

-4 Failed to connect to host

-5 Incorrect username

-6 Incorrect password

-10 Failed to change ASCII mode to binary mode

-20 Host IP is empty

-21 Username is empty

152

CipherLab C Programming Part II

Remarks Refer to Appendix V — FTP Response & Error Code.

 FTP messages are are stored in the global array szFTPReplyCode[256].

See Also FTPClose

11.4.2 DISCONNECT: FTPCLOSE

FTPClose 8000, 8200, 8300, 8400, 8700

Purpose To close the connection.

Syntax void FTPClose (void);

Example FTPClose();

Return Value None

Remarks Refer to Appendix V — FTP Response & Error Code.

 FTP messages are are stored in the global array szFTPReplyCode[256].

See Also FTPOpen

11.4.3 GET DIRECTORY: FTPDIR

FTPDir 8000, 8200, 8300, 8400, 8700

Purpose To save remote file information in the current working directory to the file
DIRList on the mobile computer.

Syntax int FTPDir (void);

Example FTPDir();

Return Value If successful, it returns 0.

On error, it returns a non-zero value to indicate a specific error condition.

Return Value

-131 Failed to open DIRList

-133 Failed to download file information from working directory

Remarks This function will issue the LIST command to get the remote file information.
File entry format depends on FTP server. Refer to 11.2.1 Remote File
Information for file entry format.

Refer to Appendix V — FTP Response & Error Code.

 FTP messages are are stored in the global array szFTPReplyCode[256].

See Also FTPCwd

 153

 Chapter 11 FTP Functionality

11.4.4 CHANGE DIRECTORY: FTPCWD

FTPCwd 8000, 8200, 8300, 8400, 8700

Purpose To change the current working directory.

Syntax int FTPCwd (char *NewDir);

Parameters char *NewDir

Pointer to a buffer where the new directory is stored. Refer to examples
below.

Example 1 FTPCwd((char *)"123");

/* change to the directory 123 located in the parent directory of the
current directory */

Example 2 FTPCwd((char *)"/Root/Temp");

/* change to the directory Temp by specifying absolute path */

Example 3 FTPCwd((char *)"..");

/* Back to the parent directory of the current directory */

Example 4 FTPCwd((char *)"/");

/* Back to the root directory */

Return Value If successful, it returns 0.

On error, it returns a non-zero value to indicate a specific error condition.

Return Value

-132 Failed to change working directory

Remarks Refer to Appendix V — FTP Response & Error Code.

 FTP messages are are stored in the global array szFTPReplyCode[256].

See Also FTPDir

154

CipherLab C Programming Part II

11.4.5 UPLOAD FILE: FTPSEND, FTPAPPEND

FTPSend 8000, 8200, 8300, 8400, 8700

Purpose To upload files.

Syntax int FTPSend (char *LocalFile,

 char *RemoteFile,

char *ProcessOption);

Parameters char *LocalFile

Pointer to a buffer where the local file name is stored.

char *RemoteFile

Pointer to a buffer where the remote file name is stored.

char *ProcessOption Reserved

Pointer to a buffer where the preprocessing option is stored.

Example FTPSend((char *)"Tx1.TXT", (char *)"Tx1.TXT", (char *)"");

Return Value If successful, it returns 0.

On error, it returns a non-zero value to indicate a specific error condition.

Return Value

1 Local file name is empty

-134 Failed to find local file (= no file can be sent)

-135 Failed to send file to host

Remarks Refer to Appendix V — FTP Response & Error Code.

 FTP messages are are stored in the global array szFTPReplyCode[256].

See Also FTPAppend, FTPRecv

 155

 Chapter 11 FTP Functionality

FTPAppend 8000, 8200, 8300, 8400, 8700

Purpose To append files to remote host.

Syntax int FTPAppend (char *LocalFile,

 char *RemoteFile,

char *ProcessOption);

Parameters char *LocalFile

Pointer to a buffer where the local file name is stored.

char *RemoteFile

Pointer to a buffer where the remote file name is stored.

char *ProcessOption Reserved

Pointer to a buffer where the preprocessing option is stored.

Example FTPAppend((char *)"Tx1.TXT", (char *)"Tx1.TXT", (char *)"");

Return Value If successful, it returns 0.

On error, it returns a non-zero value to indicate a specific error condition.

Return Value

1 Local file name is empty

-134 Failed to find local file (= no file can be sent)

-135 Failed to send file to host

Remarks This function is not supported by Bluetooth FTP. Calling FTPAppend() will get
the same result as calling FTPSend().

Refer to Appendix V — FTP Response & Error Code.

 FTP messages are are stored in the global array szFTPReplyCode[256].

See Also FTPRecv, FTPSend

156

CipherLab C Programming Part II

11.4.6 DOWNLOAD FILE: FTPRECV

FTPRecv 8000, 8200, 8300, 8400, 8700

Purpose To download files.

Syntax int FTPRecv (char *LocalFile,

 char *RemoteFile,

char *ProcessOption);

Parameters char *LocalFile

Pointer to a buffer where the local file name is stored.

char *RemoteFile

Pointer to a buffer where the remote file name is stored.

char *ProcessOption Reserved

Pointer to a buffer where the preprocessing option is stored.

Example FTPRecv((char *)"Tx1.TXT", (char *)"Tx1.TXT", (char *)"");

Return Value If successful, it returns 0.

On error, it returns a non-zero value to indicate a specific error condition.

Return Value

1 Local file name is empty

-131 Failed to open local file (= no file can save data)

-133 Failed to download file from host

Remarks Refer to Appendix V — FTP Response & Error Code.

 FTP messages are are stored in the global array szFTPReplyCode[256].

See Also FTPSend

 157

 Chapter 11 FTP Functionality

11.4.7 DELETE FILES FROM FTP SERVER: FTPDELETE

FTPDelete 8200, 8400, 8700

Purpose To delete files from the FTP server.

Syntax int FTPDelete (char *RemoteFile,

 char *ProcessOption);

Parameters char *RemoteFile

Pointer to a buffer where the remote file name is stored.

char *ProcessOption Reserved

Pointer to a buffer where the preprocessing option is stored.

Example FTPDelete((char *)"Tx1.TXT", (char *)"");

Return Value If successful, it returns 0, else -1.

Remarks Refer to Appendix V — FTP Response & Error Code.

 FTP messages are are stored in the global array szFTPReplyCode[256].

See Also

Note: Such function deletes files from the FTP server only. It doesn’t delete any file from
the mobile computer.

158

CipherLab C Programming Part II

11.4.8 RENAME FILES ON FTP SERVER: FTPRENAME

FTPRename 8200, 8400, 8700

Purpose To rename the files on the FTP server.

Syntax int FTPRename (char *RemoteNewFile,

 char *RemoteOldFile,

char *ProcessOption);

Parameters char *RemoteNewFile

Pointer to a buffer where the new file name is stored.

char *RemoteOldFile

Pointer to a buffer where the old file name is stored.

char *ProcessOption Reserved

Pointer to a buffer where the preprocessing option is stored.

Example FTPRename((char *)"New.TXT", (char *)"Old.TXT" , (char *)"");

Return Value If successful, it returns 0, else -1.

Remarks Refer to Appendix V — FTP Response & Error Code.

 FTP messages are are stored in the global array szFTPReplyCode[256].

Note: Such function renames the files on the FTP server only. It doesn’t rename any file
on the mobile computer.

 159

 Chapter 11 FTP Functionality

11.4.9 UNPACKDBF

UnpackDBF 8000, 8200, 8300, 8400, 8700

Purpose To unpack the DBF files created by PC utility “DataConverter.exe”.

Syntax int UnpackDBF (const char *filenameSource);

Parameters const char *filenameSource

Pointer to a buffer where the source file name is stored.

Example 1 unpack_file_count = UnpackDBF(“packdata”);

// File stored in SRAM

Example 2 unpack_file_count = UnpackDBF(“A:\\DBF_Data”);

// File stored on SD (8200/8400/8700)

Return Value If successful, it returns the number of unpacked DBF files.

On error, it returns 0. The global variable fErrorCode is set to to indicate the
error condition encountered. You may call read_error_code to get the error
code.

Error Code Meaning

2 Source file in SRAM does not exist.

4 Source file format is incorrect.

10 Not enough space in SRAM.

31 Fail to open file on SD card. Read ferrno for more
information.

Remarks It requires using the PC utility “DataConverter.exe” to create legal files (=
packDBF) before downloading DBF files, via RS-232 or FTP, to the mobile
computer and saved to SRAM or SD card. On the mobile computer, it then
requires calling UnpackDBF() to recover the file.

 If it is saved to SRAM, the original packed DBF files will be automatically
removed upon completion of unpacking.

160

CipherLab C Programming Part II

11.4.10 WILDCARDS FOR REMOTE FILE NAME (USER-SPECIFIED SRING)

GetUserWildCard 8000, 8200, 8300, 8400, 8700

Purpose To get the user-specified string.

Syntax char* GetUserWildCard (void);

Example char *pUserString;

pUserString =GetUserWildCard();

printf(“UserDefinedString:%s.\r\n”, pUserString);

Return Value If successful, it returns a pointer to where the value of “%I” is stored.

SetUserWildCard 8000, 8200, 8300, 8400, 8700

Purpose To set a string used as wildcard “%I” for the remote file name in the script.

Syntax int SetUserWildCard (char *UserString);

Parameters char *UserString

Pointer to a buffer where the string is stored.

Example SetUserWildCard((char*) “Cipherlab”);

Return Value If successful, it returns 0.

Otherwise, it returns -1 to indicate the string length is over 16 characters, or
the pointer is NULL.

 161

 Chapter 11 FTP Functionality

11.5 FILE HANDLING

11.5.1 DAT FILES

Upload via FTP Pre-processing of File in Format, Data, etc.

Host

Not required

 Mobile Computer:

 SRAM

 SD card (8200/8400/8700 only)

8200/8400/8700 with SD card as mass storage Pre-processing of File in Format, Data, etc.

Host

Not required

 Mobile Computer:

 SD card (8200/8400/8700 only)

 SD card (8200/8400/8700 only)

162

CipherLab C Programming Part II

11.5.2 DBF FILES

Download via FTP Pre-processing of File in Format, Data, etc.

Host

 Mobile Computer:

 SRAM

Remote: Use PC utility “DataConverter.exe”
to create legal files (packDBF).

Local: Application needs to execute
UnpackDBF().

Refer to

11.4.9 UnpackDBF.

 SD card (8200/8400/8700 only)

Remote
only:

Use PC utility “DataConverter.exe”
to create legal files (DB0; DB1~8
for IDX files).

Upload via FTP Pre-processing of File in Format, Data, etc.

Host

 Mobile Computer:

 SRAM

Not required

 SD card (8200/8400/8700 only)

Remote
only:

Use PC utility “DataConverter.exe”
to convert SD files (DB0; DB1~8
for IDX files) to legal files.

8200/8400/8700 with SD card as mass storage Pre-processing of File in Format, Data, etc.

Host

 Mobile Computer:

 SD card (8200/8400/8700 only)

Remote
only:

Use PC utility “DataConverter.exe”
to create legal files (DB0; DB1~8
for IDX files).

 SD card (8200/8400/8700 only)

Remote
only:

Use PC utility “DataConverter.exe”
to convert SD files (DB0; DB1~8
for IDX files) to legal files.

 163

 Chapter 11 FTP Functionality

11.6 SD CARD ACCESS

For 8200/8400/8700, access to SD card is allowed. When a file name is required as an
argument passed to a function call, it must be given in full path as shown below. Only
absolute path is supported, and the file name is not case-sensitive.

Warning: Although file name may be case-sensitive on remote host, for use with SD
card, it is suggested to avoid using letter case for identifying two files with
identical file name, such as “AAA.txt” and “aaa.txt”.

The maximum length of a full-path file name is 255 characters, where file name can be
made up of 8 characters at most. Refer to 11.6.2 File Name.

File Path File in Root Directory File in Sub-directory

“A:\\...” “A:\\UserFile” “A:\\SubDir\\UserFile”

“a:\\...” “a:\\UserFile” “a:\\SubDir\\UserFile”

“A:/...” “A:/UserFile” “A:/SubDir/UserFile”

“a:/...” “a:/UserFile” “a:/SubDir/UserFile”

Note: (1) For DAT files, it does not matter whether filename extension is included or not.
 (2) For DBF files, it does not require including filename extension.

164

CipherLab C Programming Part II

11.6.1 DIRECTORY

Unlike the file system on SRAM, the file system on SD card supports hierarchical tree
directory structure and allows creating sub-directories. Several directories are reserved
for particular use.

Reserved Directory Related Application or Function Remark

\Program Program Manager | Download

 Program Manager | Activate

 Kernel Menu | Load Program

 Kernel Menu | Kernel Update

 UPDATE_BASIC()

Store programs to this folder so that you can
download them to 8200/8400/8700:

 C program — *.SHX

 BASIC program — *.INI and *.SYN

\BasicRun BASIC Runtime Store DAT and DBF files that are created and
accessed in BASIC runtime to this folder.
Their permanent filenames are as follows:

DAT Filename

DAT file #1 TXACT1.DAT

DAT file #2 TXACT2.DAT

DAT file #3 TXACT3.DAT

DAT file #4 TXACT4.DAT

DAT file #5 TXACT5.DAT

DAT file #6 TXACT6.DAT

DBF Filename

DBF file #1 Record file F1.DB0

System Default
Index

F1.DB1

Index file #1 F1.DB2

Index file #2 F1.DB3

Index file #3 F1.DB4

DBF file #2 Record file F2.DB0

System Default
Index

F2.DB1

Index file #1 F2.DB2

Index file #2 F2.DB3

Index file #3 F2.DB4

DBF file #3 Record file F3.DB0

System Default
Index

F3.DB1

Index file #1 F3.DB2

 165

 Chapter 11 FTP Functionality

 Index file #2 F3.DB3

Index file #3 F3.DB4

DBF file #4 Record file F4.DB0

System Default
Index

F4.DB1

Index file #1 F4.DB2

Index file #2 F4.DB3

Index file #3 F4.DB4

DBF file #5 Record file F5.DB0

System Default
Index

F5.DB1

Index file #1 F5.DB2

Index file #2 F5.DB3

Index file #3 F5.DB4

\AG\DBF

\AG\DAT

\AG\EXPORT

\AG\IMPORT

Application Generator (a.k.a. AG) Store DAT, DBF, and Lookup files that are
created and/or accessed in Application
Generator to this folder.

166

CipherLab C Programming Part II

11.6.2 FILE NAME

A file name must follow 8.3 format (= short filenames) — at most 8 characters for
filename, and at most three characters for filename extension. The following characters
are unacceptable: “ * + , : ; < = > ? | []

 On 8200/8400/8700 Series, it can only display a filename of 1 ~ 8 characters (the
null character not included), and filename extension will be displayed if provided. If a
file name specified is longer than eight characters, it will be truncated to eight
characters.

 Long filenames, at most 255 characters, are allowed when using 8200/8400/8700
equipped with SD card as a mass storage device. For example, you may have a
filename “123456789.txt” created from your computer. However, when the same file
is directly accessed on 8200/8400/8700, the filename will be truncated to
“123456~1.txt”.

 If a file name is specified other in ASCII characters, in order for 8200/8400/8700 to
display it correctly, you may need to download a matching font file to
8200/8400/8700 first.

 The file name is not case-sensitive.

 167

Through programming 8000/8300/8500 Series mobile computer, you can use cradle
commands to control the Cradle.

For example,

 Call SetCommType (1, COMM_IR) to set COM1 to Serial IR communication.
 To enable the issuing of cradle commands over COM port to the Ethernet Cradle, call

open_com(1,BAUD_115200|DATA_BIT8|PARITY_NONE|HANDSHAKE_NONE|
CRADLE_COMMAND);

to enable the issuing of cradle commands over COM port to the Modem Cradle, call

open_com(1,BAUD_57600|DATA_BIT8|PARITY_NONE|HANDSHAKE_NONE|C
RADLE_COMMAND).

Note: (1) Unless you have changed the baud rate setting via the DIP switch onboard,
pass the factory setting BAUD_115200 for Ethernet Cradle and BAUD_57600 for
Modem Cradle.
 (2) Baud rate will be reset to the DIP switch setting whenever you plug or unplug
the RS-232 cable.

#fOrMaT:x Cradle Command

Purpose To change the serial port settings of the cradle.

Syntax write_com(int port, “#fOrMaT:x\r”);

Parameters int port

The IR port number of the mobile computer.

#fOrMaT:x Meaning

0 Set serial port mode to 8, N, 1

1 Set serial port mode to 7, N, 2

2 Set serial port mode to 7, O, 2

3 Set serial port mode to 7, E, 2

Example SetCommType(1,COMM_IR);

open_com(1,DATA_BIT8|BAUD_57600|PARITY_NONE|
HANDSHAKE_NONE|CRADLE_COMMAND);

write_com(1,“#fOrMaT:2\r”); // set to 7,O,2 mode

while (!com_eot(1));

Return Value If successful, it returns “#DONE”.

Remarks This cradle command is supported by firmware version 3.50 and later.

See Also #SeRiAl

Appendix I
CRADLE COMMANDS

168

CipherLab C Programming Part II

#mOdEm Cradle Command

Purpose To set the working mode of cradle to MODEM mode.

Syntax write_com(int port, “#mOdEm\r”);

Parameters int port

The IR port number of the mobile computer.

Example SetCommType(1,COMM_IR);

open_com(1,DATA_BIT8|BAUD_57600|PARITY_NONE|
HANDSHAKE_NONE|CRADLE_COMMAND);

write_com(1,“#mOdEm\r”); // set to MODEM mode

while (!com_eot(1));

Return Value If successful, it returns “#DONE”.

Remarks After issuing the command, the baud rate of the cradle will be reset to the DIP
switch setting.

Note: For the Ethernet Cradle, this command “#mOdEm” actually means “to select
Ethernet” because the modem board has been replaced by the Ethernet board.

#SeRiAl Cradle Command

Purpose To reset the serial port settings of the cradle to defaults.

Syntax write_com(int port, “#SeRiAl\r”);

Parameters int port

The IR port number of the mobile computer.

Example SetCommType(1,COMM_IR);

open_com(1,DATA_BIT8|BAUD_57600|PARITY_NONE|
HANDSHAKE_NONE|CRADLE_COMMAND);

write_com(1,“#SeRiAl\r”); // set to default

while (!com_eot(1));

Return Value If successful, it returns “#DONE”.

Otherwise, it returns “#CABLE!” to indicate no RS-232 cable is detected.

Remarks This cradle command is supported by firmware version 3.30 and later.

It will reset the serial port settings to defaults - N, 8, 1; however, the baud
rate depends on the current DIP switch setting (57600 bps by default).

Note: Baud rate will be reset to the DIP switch setting whenever you plug or unplug the
RS-232 cable.

 169

 Appendix I Cradle Commands

#vErSiOn? Cradle Command

Purpose To retrieve the version information of the IR board.

Syntax write_com(int port, “#vErSiOn?\r”);

Parameters int port

The IR port number of the mobile computer.

Example SetCommType(1,COMM_IR);

open_com(1, DATA_BIT8|BAUD_57600|PARITY_NONE|
HANDSHAKE_NONE|CRADLE_COMMAND);

write_com(1,“#vErSiOn?\r”);

while (!com_eot(1));

Return Value If successful, it returns the firmware version. For example, “#Ver03.20”.

Note: There will be no response if the IR board version is no later than v3.00!

UNKNOWN COMMAND

It simply returns “#NAK”.

170

CipherLab C Programming Part II

 171

NETCONFIG & BTCONFIG

WIRELESS NETWORKING

Refer to 4.1.1 NETCONFIG Structure. However, those highlighted in gray are not included
in the structure.

Index Data Type WLAN Note

1 P_LOCAL_IP unsigned char [4]

2 P_SUBNET_MASK unsigned char [4]

3 P_DEFAULT_GATEWAY unsigned char [4]

4 P_DNS_SERVER unsigned char [4]

5 P_LOCAL_NAME char [33]

6 P_SS_ID char [33]

7 P_WEPKEY_0 unsigned char [14]

8 P_WEPKEY_1 unsigned char [14]

9 P_WEPKEY_2 unsigned char [14]

10 P_WEPKEY_3 unsigned char [14]

11 P_DHCP_ENABLE int

12 P_AUTHEN_ENABLE unsigned int

13 P_WEP_LEN int

14 P_SYSTEMSCALE int

15 P_DEFAULTWEPKEY int

16 P_DOMAINNAME char [129] Read only

17 P_WEP_ENABLE unsigned int

18 P_EAP_ENABLE unsigned int

19 P_EAP_ID char [33]

20 P_EAP_PASSWORD char [33]

21 P_POWER_SAVE_ENABLE unsigned int

22 P_PREAMBLE unsigned int

23 P_MACID unsigned char [6] Read only

30 P_ADHOC unsigned int

Appendix II
NET PARAMETERS BY INDEX

172

CipherLab C Programming Part II

Index Data Type WLAN

31 P_FIRMWARE_VERSION char [4] Read only

33 P_WPA_ENABLE

P_WPA_PSK_ENABLE

unsigned int

34 P_WPA_PASSPHRASE unsigned char [64]

35 P_BSSID unsigned char [6] Read only

36 P_FIXED_BSSID unsigned char [6]

37 P_ROAM_TXRATE_11B int

38 P_ROAM_TXRATE_11G int

39 P_WPA2_PSK_ENABLE unsigned int

48 P_SCAN_TIME Int

49 P_PROFILE_1 (void*)0

Unsigned char[100]

50 P_PROFILE_2 (void*)0

Unsigned char[100]

51 P_PROFILE_3 (void*)0

Unsigned char[100]

52 P_PROFILE_4 (void*)0

Unsigned char[100]

53 P_APPLY_PROFILE_1 (void*)0

Unsigned char[100]

Write only

54 P_APPLY_PROFILE_2 (void*)0

Unsigned char[100]

Write only

55 P_APPLY_PROFILE_3 (void*)0

Unsigned char[100]

Write only

56 P_APPLY_PROFILE_4 (void*)0

Unsigned char[100]

Write only

57 P_SCAN_CHANNEL Unsigned char[14] 8200 only

58 P_SCAN_CHANNEL_TIME Int 8200 only

91 P_ROAM_RSSI_THRHOLD Int 8200 only

92 P_ROAM_RSSI_DELTA Int 8200 only

93 P_ROAM_PERIOD Int 8200 only

 173

 Appendix II Net Parameters by Index

Note:

Parameter Index Data Type Description

GetNetParameter 49~52 Unsigned char[100] Get WI-FI Connection Profile 1~4

SetNetParameter 49~52 (void*)0 Store current WI-FI Connection
setting to Profile 1~4

SetNetParameter 49-52 Unsigned char[100] Store user setting to Profile 1~4

SetNetParameter 53-56 (void*)0 Apply Profile 1~4 to create a WI-FI
connection

SetNetParameter 53-56 Unsigned char[100] Apply user setting to create a WI-FI
connection

174

CipherLab C Programming Part II

BLUETOOTH SPP, FTP, DUN

Refer to 5.2.1 BTCONFIG Structure. However, those highlighted in gray are not included
in the structure.

Index Data Type SPP FTP DUN

5 P_LOCAL_NAME char [33]

24 P_BT_MACID unsigned char [6] Read
only

Read
only

Read
only

25 P_BT_REMOTE_NAME unsigned char [20]

26 P_BT_SECURITY unsigned int

27 P_BT_PIN_CODE unsigned char [16]

28 P_BT_BROADCAST_ON unsigned int

29 P_BT_POWER_SAVE_ON unsigned int

32 P_BT_GPRS_APNAME unsigned char [20]

40 P_BT_FREQUENT_DEVICE1 See BTSearchInfo
Structure

41 P_BT_FREQUENT_DEVICE2 See BTSearchInfo
Structure

42 P_BT_FREQUENT_DEVICE3 See BTSearchInfo
Structure

43 P_BT_FREQUENT_DEVICE4 See BTSearchInfo
Structure

44 P_BT_FREQUENT_DEVICE5 See BTSearchInfo
Structure

45 P_BT_FREQUENT_DEVICE6 See BTSearchInfo
Structure

46 P_BT_FREQUENT_DEVICE7 See BTSearchInfo
Structure

47 P_BT_FREQUENT_DEVICE8 See BTSearchInfo
Structure

 175

 Appendix II Net Parameters by Index

GSMCONFIG

Refer to 6.4.1 GSMCONFIG Structure (GSM/GPRS).

Index Data Type GSM GPRS

60 P_GSM_SERVICE_CENTER unsigned char [21] Read only

61 P_GSM_PIN_CODE unsigned char [9]

62 P_GPRS_AP unsigned char [21]

63 P_GSM_NET unsigned char [21] Read only

64 P_GSM_MODEM_DIAL_NUM unsigned char [21]

65 P_GPRS_CHAP_ENABLE unsigned int

66 P_GPRS_CHAP_PASSWORD char [33]

67 P_GPRS_CHAP_USERNAME char [33]

PPPCONFIG

Refer to 8.1.1 PPPCONFIG Structure.

Index Data Type PPP

70 P_PPP_DIALUPPHONE unsigned char [20]

71 P_PPP_LOGINNAME unsigned char [41]

72 P_PPP_LOGINPASSWORD unsigned char [20]

73 P_PPP_BAUDRATE int

USBCONFIG

Refer to 9.2.1 USBCONFIG Structure.

Index Data Type USB

80 P_USB_VCOM_BY_SN unsigned int

176

CipherLab C Programming Part II

 177

Refer to the following sections for related structures and functions.

 4.1.3 NETSTATUS Structure
 4.1.4 RADIOSTATUS Structure
 5.2.4 BTSTATUS Structure
 6.4.3 GSMSTATUS Structure (GSM/GPRS)

WIRELESS NETWORKING

For 8000/8200/8300/8400/8700 with 802.11b/g module, we suggest using indexes
14~16 instead of indexes 2~4.

For 8231 with 802.11b/g/n module, indexes 2~4 are not supported.

Index Remarks 802.11b only 802.11b/g 802.11b/g/n

0 WLAN_State NETSTATUS Structure

1 WLAN_Quality

2 WLAN_Signal

3 WLAN_Noise

4 WLAN_Channel

5 WLAN_TxRate

6 NET_IPReady

14 WLAN_SNR RADIOSTATUS Structure

15 WLAN_RSSI

16 WLAN_NOISEFLOOR

Note: Indexes 14~16 are only valid for 8000/8200/8231/8300/8400/8700 with
802.11b/g or 802.11b/g/n module.

Appendix III
NET STATUS BY INDEX

178

CipherLab C Programming Part II

BLUETOOTH SPP, FTP, DUN

DUN¹ refers to Bluetooth DUN for connecting a modem.

DUN² refers to Bluetooth DUN-GPRS for activating a mobile's GPRS.

Index Remarks SPP FTP DUN1 DUN2

6 NET_IPReady NETSTATUS Structure

7 BT_State BTSTATUS Structure

8 BT_Signal

GSM/GPRS

Index Remarks GSM GPRS

11 GSM_State GSMSTATUS Structure

12 GSM_RSSIQuality

13 GSM_PINstate

 179

WLAN EXAMPLE (802.11b/g)

Configure Network Parameters

Generally, network configuration has to be done in advance by calling GetNetParameter() and
SetNetParameter().

Initialize Networking Protocol Stack & Wireless Module

The wireless module, such as of 802.11b/g, Bluetooth or GSM/GPRS, will not be powered until
NetInit() is called.

Mobile Computer WLAN

(802.11b/g)

GPRS Bluetooth

DUN-GPRS

PPP via RS-232

8062 --- --- NetInit(3L) ---

8071 NetInit() --- --- ---

8230 NetInit()

NetInit(0L)

--- NetInit(3L) NetInit(5L)

8260 --- --- NetInit(3L) NetInit(5L)

8330 NetInit()

NetInit(0L)

--- NetInit(3L) NetInit(5L)

8362 --- --- NetInit(3L) NetInit(5L)

8370 NetInit() --- --- NetInit(5L)

8400 --- --- NetInit(3L) NetInit(5L)

8470 NetInit()

NetInit(0L)

--- NetInit(3L) NetInit(5L)

8500 --- --- NetInit(3L) ---

8570 NetInit()

NetInit(0L)

--- NetInit(3L) ---

8700 --- --- NetInit(3L) ---

8770 NetInit()

NetInit(0L)

--- NetInit(3L) ---

8790 NetInit()

NetInit(0L)

NetInit(2L) NetInit(3L) ---

Appendix IV
EXAMPLES

180

CipherLab C Programming Part II

Note: (1) For the use of Modem Cradle, use NetInit(4L) for PPP via IR or direct connect.
 (2) For the use of Ethernet Cradle, use NetInit(6L) for Ethernet via IR or direct
connect.

Check Network Status

Once the initialization process is done, the network status can be retrieved from the system. It
will be periodically updated by the system. The application program must explicitly call
CheckNetStatus() to get the latest status.

Open Connection

Before reading and writing to the remote host, a connection must be established (opened). Call
Nopen() to open a connection. For example,

conno = Nopen(“*”,“TCP/IP”,2000,0,0);

Transmit Data

socket_cansend()

Before sending data to the network, call socket_cansend() to check if there is enough buffer
size to write out the data immediately. It also can be used to check if the data being sent is
more than 4 packets when there is no response from the remote host. Then, call Nwrite() to
send data on the network.

socket_hasdata()

Before receiving data from the network, call socket_hasdata() to check if there is data in the
buffer. Then, call Nread() to receive data on the network.

Note: In case of an abnormal break during PPP, DUN-GPRS, or GPRS connection,
CheckNetStatus(IPReady) will return -1.

Other Useful Functions…

Refer to 2.4 Supplemental Functions.

Close Connection

Call Nclose() to terminate a particular connection, which equals to conno returned by Nopen(),
when the application program does not use it any more.

Terminate Networking Protocol Stack & Wireless Module

When the application program wishes to stop using the network, call NetClose() to terminate
networking and shut down the power to the module so that it can save power. To enable the
network again, it is necessary to call NetInit() again.

Note: After calling NetClose(), any previous network connection and data will be lost.

 181

 Appendix IV Examples

WPA ENABLED FOR SECURITY

If WPA-PSK/WPA2-PSK is enabled for security, SSID and Passphrase will be processed to
generate a pre-share key. If you change SSID or Passphrase, it will have to re-generate
a pre-share key.

1) For initial association with an access point, you will see an antenna icon developing
on the screen to indicate that the mobile computer is processing a pre-share key.

2) After having generated the pre-share key, the mobile computer proceeds to establish

a connection with an access point, and you will see the whole antenna is flashing.

3) When the mobile computer has been connected to the access point successfully, you
will see the whole antenna and the indication of wireless signal strength.

Note: Be aware that these icons will appear on the device screen after NetInit() is called.
(WPA-PSK/WPA2-PSK must be enabled first!)

182

CipherLab C Programming Part II

BLUETOOTH EXAMPLES

SPP MASTER

Inquiry

Call BTInquiryDevice (BTSearchInfo *Info, int max) to discover nearby Bluetooth devices.

Pairing

Call BTPairingTest (BTSearchInfo *Info, BTSerialPort) to pair with a Bluetooth device.

Set Communication Type

Call SetCommType (2, COMM_RF) to set COM2 for Bluetooth communication.

Open COM Port

Call open_com (2, BT_SERIALPORT_MASTER) to initialize Bluetooth SPP Master.

Check Connection

Call com_eot (2) to detect if the connection is completed. For example,

while (1) {

 if (com_eot(2)) break;

 OSTimeDly(4);

}

Transmit/receive Data

Call write_com() and read_com() to transmit and receive data respectively.

Check Connection

Call com_eot (2) to detect if the connection is broken. For example,

if (!com_eot(2)) printf(“Connection break”);

Close COM Port

Call close_com (2) to terminate communication and shut down the Bluetooth module.

 183

 Appendix IV Examples

SPP SLAVE

Set Communication Type

Call SetCommType (2, COMM_RF) to set COM2 for Bluetooth communication.

Open COM Port

Call open_com (2, BT_SERIALPORT_SLAVE) to initialize Bluetooth SPP Slave.

Check Connection

Call com_eot (2) to detect if the connection is completed. For example,

while (1) {

 if (com_eot(2)) break;

 OSTimeDly(4);

}

Transmit/receive Data

Call write_com() and read_com() to transmit and receive data respectively.

Check Connection

Call com_eot (2) to detect if the connection is broken. For example,

if (!com_eot(2)) printf(“Connection break”);

Close COM Port

Call close_com (2) to terminate communication and shut down the Bluetooth module.

184

CipherLab C Programming Part II

WEDGE EMULATOR VIA SPP

Refer to Part I: 2.4 Keyboard Wedge and 2.4.3 Wedge Emulator.

Sample Code

===

For this purpose, the application should call these functions in the beginning:

#include <8300lib.h>

#include <ucos.h>

static const int beep[] = {32,5,0,0};

main()

{

SetCommType(2,COMM_RF); /* Add WEDGE_EMULATOR flag to open_com */

open_com(2,BT_SERIALPORT_SLAVE|WEDGE_EMULATOR);

clr_scr();

gotoxy(0,0); printf(“ Virtual Wedge ”);

gotoxy(0,1); printf(“====================”);

gotoxy(0,2); printf(“ Wait ”);

gotoxy(0,3); printf(“ Connecting... ”);

gotoxy(0,4); printf(“====================”);

while (1) {

 if (WedgeReady()) break;

 OSTimeDly(4);

}

clr_scr();

gotoxy(0,0); printf(“ Virtual Wedge ”);

gotoxy(0,1); printf(“====================”);

gotoxy(0,2); printf(“ Ready ”);

gotoxy(0,3); printf(“Press a key to start”);

gotoxy(0,4); printf(“====================”);

 185

 Appendix IV Examples

on_beeper(beep);

while (!getchar()) OSTimeDly(4);

while (1) {

 if (getchar())

 SendData(“1234567890abcdefghijklmnopqrstuvwxyz”);

OSTimeDly(4);

}

}

186

CipherLab C Programming Part II

BLUETOOTH HID

Configure Wedge Settings

Bluetooth HID makes use of the WedgeSetting array to govern the HID operations. Refer to
Part I: 2.4 Keyboard Wedge.

Subscript Bit Description

0 7 - 0 KBD / Terminal Type

1 7 1: Enable capital lock auto-detection

0: Disable capital lock auto-detection

1 6 1: Capital lock on

0: Capital lock off

1 5 1: Ignore alphabets' case

0: Alphabets are case-sensitive

1 4 - 3 00: Normal

10: Digits at lower position

11: Digits at upper position

1 2 - 1 00: Normal

10: Capital lock keyboard

11: Shift lock keyboard

1 0 1: Use numeric keypad to transmit digits

0: Use alpha-numeric key to transmit digits

2 7 Special keyboard mode

1: Bypass

0: Apply

2 6 - 1 Inter-character delay (unit: 5ms)

2 0 HID character transmit mode

1: By character

0: Batch processing

 187

 Appendix IV Examples

WedgeSetting[0]: It is used to determine which type of keyboard wedge is applied, and the
possible value is listed below.

Setting Value Terminal Type Setting Value Terminal Type

0 Null (Data Not Transmitted) 8 PCAT (BE)

1 PCAT (US) 9 PCAT (SP)

2 PCAT (FR) 10 PCAT (PO)

3 PCAT (GR) 11 IBM A01-02 (Japanese OADG109)

4 PCAT (IT) 12 PCAT (Turkish)

5 PCAT (SV) 13 PCAT (Hungarian),
8200/8400/8700

6 PCAT (NO) 14 PCAT
(Swiss(German)),8200/8400/8700

7 PCAT (UK) 15 PCAT (DA), 8200

WedgeSetting[1]: For details, refer to Part I: 2.4 Keyboard Wedge.

WedgeSetting[2]: It is used to configure how it sends data to the host, either by character or
batch processing.

Set Communication Type

Call SetCommType (2, COMM_RF) to set COM2 for Bluetooth communication.

Open COM Port

Call open_com (2, BT_HID_DEVICE) to initialize Bluetooth HID functionality.

Check Connection

Call com_eot (2) to detect if the connection is completed. For example,

while (1) {

 if (com_eot(2)) break;

 OSTimeDly(4);

}

Frequent Device List

When there is a host device recorded in the Frequent Device List, the mobile computer (as SPP
Master) will automatically connect to it. If the connection fails, the mobile computer will try again.
If it fails for the second time, the mobile computer will wait 7 seconds for another host to initiate
a connection. If still no connection is established, the mobile computer will repeat the above
operation.

When there is no device recorded in the Frequent Device List, the mobile computer (as SPP Slave)
simply must wait for a host device (as SPP Master) to initiate a connection.

Note: As an HID input device (keyboard), the mobile computer must wait for a host to
initiate a connection. Once the HID connection is established, the host device will
be recorded in the Frequent Device List identified as HID Connection.

188

CipherLab C Programming Part II

Transmit Data

Call write_com(2, *data) or nwrite_com(2, *data, len) to transmit data.

Check Connection

Call com_eot (2) to detect if the connection is broken. For example,

if (!com_eot(2)) printf(“Connection break”);

Close COM Port

Call close_com (2) to terminate communication and shut down the Bluetooth module.

 189

 Appendix IV Examples

DUN

Inquiry

Call BTInquiryDevice (BTSearchInfo *Info, int max) to discover nearby Bluetooth devices.

Pairing

Call BTPairingTest (BTSearchInfo *Info, BTDialUpNetworking) to pair with a Bluetooth
device that can work as a modem.

Set Communication Type

Call SetCommType (2, COMM_RF) to set COM2 for Bluetooth communication.

Open COM Port

Call open_com (2, BT_DIALUP_NETWORKING) to initialize Bluetooth DUN functionality.

Check Connection

Call com_eot (2) to detect if the connection is completed. For example,

while (1) {

 if (com_eot(2)) break;

 OSTimeDly(4);

}

Transmit/receive Data

Call write_com() and read_com() to transmit and receive data respectively.

Check Connection

Call com_eot (2) to detect if the connection is broken. For example,

if (!com_eot(2)) printf(“Connection break”);

Close COM Port

Call close_com (2) to terminate communication and shut down the Bluetooth module.

190

CipherLab C Programming Part II

DUN-GPRS

To activate the GPRS functionality on a mobile phone via the built-in Bluetooth dial-up
networking technology, follow the same programming flow of WLAN Example
(802.11b/g).

 Before calling NetInit (BT_GPRS_NETWORKING), the following parameters of
DUN-GPRS must be specified.

Index Default Description

32 P_ BT_GPRS_APNAME [20] Null Name of Access Point for Bluetooth
DUN-GPRS

 191

 Appendix IV Examples

FTP (8200 ONLY)

Inquiry

Call BTInquiryDevice (BTSearchInfo *Info, int max) to discover nearby Bluetooth devices.

Pairing

Call BTPairingTest (BTSearchInfo *Info, BTOBEXFTPServer) to pair with the FTP server.

Open FTP Connection

Call FTPOpen ((char*) “0.0.0.0”, (char*) “”, (char*) “”, 0) to connect to the FTP server.

if (FTPOpen((char*)"0.0.0.0", (char*)"", (char*)"", 0))

 printf("Fail!\r\n");

else

 printf("Success!\r\n");

Change Working Directory

Call FTPCwd (char *NewDir) to change the current working directory.

printf("Move to default path.");

if (FTPCwd("\\"))

 printf("Fail!\r\n");

else

 printf("Success!\r\n");

Get Directory

Call FTPDir() to get information on the current working directory. It is saved to the file DIRList
on the mobile computer.

if (FTPDir())

 printf("Fail!\r\n");

else

 printf("Success!\r\n");

fhd1=open("DIRList");

192

CipherLab C Programming Part II

Download File

Call FTPRecv (char *LocalFile, char *RemoteFile, char *ProcessOption) to download a file.

remove("prog1");

if (FTPRecv((void*)"prog1", "user1.shx", (void*)"0"))

 printf("Fail!\r\n");

else

 printf("Success!\r\n");

Upload File

Call FTPSend (char *LocalFile, char *RemoteFile, char *ProcessOption) to upload a file.

Or call FTPAppend (char *LocalFile, char *RemoteFile, char *ProcessOption) to append it
to the file on the FTP server.

if (access("prog2") == 1) //file exists

{

 if(FTPSend("prog2", "user2.shx", (void*)"0"))

 printf("Fail!\r\n");

 else

 printf("Success\r\n");

}

Close FTP Connection

Call FTPClose() to terminate communication and shut down the Bluetooth module.

 193

 Appendix IV Examples

ACL

Set 36xx Serial Number

Call Set36xxParameter (SN, P_36xxSN) to set serial number of the connected 36xx device.

Set Communication Type

Call SetCommType (2, COMM_RF) to set COM2 for Bluetooth communication.

Open COM Port

Call open_com (2, BT_ACL_36xx) to initialize Bluetooth ACL.

Check Connection

Call com_eot (2) to detect if the connection is completed. For example,

while (1) {

 if (com_eot(2)) break;

 OSTimeDly(4);

}

Change 36xx Settings

unsigned char P;

P=ACL_PCAT_US;

Call Set36xxParameter (&P, P_BTACL_Type) to set interface type of the 36xx device.

Call Set36xxParameter (0, P_SetTo36xx) to set 36xx parameters while 36xx is connected and
ready.

Transmit/receive Data

Call write_com() and read_com() to transmit and receive data respectively.

Check Connection

Call com_eot (2) to detect if the connection is broken. For example,

if (!com_eot(2)) printf(“Connection break”);

Close COM Port

Call close_com (2) to terminate communication and shut down the Bluetooth module.

194

CipherLab C Programming Part II

GSM/GPRS EXAMPLES

GPRS

To establish a connection to the content server connected to the internet, follow the
same programming flow of WLAN Example (802.11b/g). Only client-initiated connection
is supported.

Connecting Mobile Computer

Before calling NetInit (GPRS_NETWORKING), the following parameters of GPRS must be
specified.

Index Default Description

61 P_ GSM_PIN_CODE [9] Null PIN Code for GSM/GPRS

62 P_ GPRS_AP [21] Null Name of Access Point for GPRS

Connecting 8400 GPRS Cradle (Transparent Mode)

Before calling NetInit (GPRS_CRADLE_NETWORKING), use AT commands to configure PIN
code and GPRS AP name.

 If CHAP is enabled, you must configure the settings from the mobile computer.

 It fails to initialize a connection in the following conditions: (1) PIN code and GPRS AP name
are not configured correctly via AT commands, and (2) CHAP settings are not configured
correctly on 8400.

Note: A client-initiated connection occurs when the connection is established in response
to a request from the client.

 195

 Appendix IV Examples

GSM

Configure Parameters

Call SetNetParameter() to set variables, such as PINCode[], ModemDialNum[], and so on.

It is recommended that the correct PIN code should be initialized before opening the GSM port.
This is because the PIN code will be taken as a password to activate the SIM card. Therefore, any
input of incorrect PIN code during initialization will result in wasting one attempt of PIN entry. If
you fail the PIN entry three times, the procedure of PIN code entry will be locked.

Set Communication Type

Call SetCommType (3, COMM_SMS) to set COM3 for SMS.

Or call SetCommType (3, COMM_GSMMODEM) to set COM3 for data call.

Open COM Port

Call open_com (3, setting) to initialize the GSM/GPRS module, where the setting parameter is of
no use. The initialization takes about 10 seconds.

An antenna icon representing the GSM(GSM_SMS only)/GPRS operation will be displayed, and it
keeps flashing until the open_com() procedure is completed. Once the procedure is completed,
the signal strength bar will be displayed next to the antenna icon, and it will be updated every five
seconds. The level of the signal strength bar ranges from 0 to 5.

 The value of the PIN code will be fetched as a password required for initializing the operation.

 Refer to 6.2.1 PIN Procedure and 6.2.2 PUK Procedure for handling PINCode[] errors. New PIN
code re-entry and PUK unblock operation are furnished.

 Once the PIN code check is passed, PINCode[] will be updated with the input value.

 After open_com (3, setting) is completed, relevant information will be obtained, such as
SMServiceCenter[], NET[], and PINstatus.

Note: For GSM_Modem, refer to GSMModemGetRSSI(). When GSMModemGetRSSI() is
called first, CheckNetStatus(GSM_RSSIQuality) will become available.

196

CipherLab C Programming Part II

Check Connection

Call com_eot(3) to detect if the initialization is completed. For example,

while (1) {

 if (com_eot(3)) break;

 OSTimeDly(4);

}

Such checking must be carried out to ensure the initialization of the GSM/GPRS module has been
completed. com_eot (3) will return 1 if the initialization is completed.

Note: The POWER key will be disabled during the connection process. Yet, the [ESC] key
is provided for being able to abort the PIN code check while connecting; however,
com_eot (3) will never return 1. A countermeasure, such as a time-out check, is
recommended to prevent from waiting infinitely.

Transmit/receive Data

Call nwrite_com(3, *buf, len) and read_com(3, *buf) to transmit and receive data
respectively. For example,

nwrite_com(3,(void*)buf,len);

while (!com_eot(3)) OSTimeDly(4);

 :

(use GSM)

OR

fd = open(“DAT”);

 :

while (read_com(3,(char*)c))

{

append(fd,(void*)&c,1);

}

 :

Check Transmission

Call com_eot(3) to detect if the transmission is completed for writing COM port. For example,

if (com_eot(3)) printf(“Write_Com Complete”);

Close COM Port

Call close_com (3) to terminate communication and shut down the GSM/GPRS module.

 197

 Appendix IV Examples

ACOUSTIC COUPLER EXAMPLE

Set Communication Type

Call SetCommType (2, COMM_ACOUSTIC) to set COM2 for Acoustic Coupler communication.

Open COM Port

Call open_com() to set the connection to Modem mode or DTMF mode and configure related
parameters.

Transmit Data

Call nwrite_com() and write_com() to transmit data in Modem mode or to dial out to the
remote computer in DTMF mode.

Check Transmission

Call com_eot (2) to check whether there is any transmission in progress. For example,

while (!com_eot(2)); // wait till prior transmission completed

write_com(2,“NEXT STRING”);

Close COM Port

Call close_com (2) to terminate communication.

198

CipherLab C Programming Part II

USB EXAMPLES

USB VIRTUAL COM

Set Communication Type

Call SetCommType (5, COMM_USBVCOM) to set COM5 for USB Virtual COM communication.

Open COM Port

Call open_com (5, setting) to initialize the COM port, where the setting parameter is of no use.

Check Connection

Call com_eot (5) to detect if the connection is completed. For example,

while (1) {

 if (com_eot(5)) break;

 OSTimeDly(4);

}

Transmit/receive Data

Call write_com() and read_com() to transmit and receive data respectively.

Check Transmission

Call com_eot(5) to check whether there is any transmission in progress. For example,

while (com_eot(5)); // wait till prior transmission completed

Close COM Port

Call close_com (5) to terminate USB communication.

 199

 Appendix IV Examples

USB HID

Configure Wedge Settings

Like Bluetooth HID, USB HID also makes use of the WedgeSetting array to govern the HID
operations. Refer to Part I: 2.4 Keyboard Wedge.

Subscript Bit Description

0 7 - 0 KBD / Terminal Type

1 7 1: Enable capital lock auto-detection

0: Disable capital lock auto-detection

1 6 1: Capital lock on

0: Capital lock off

1 5 1: Ignore alphabets' case

0: Alphabets are case-sensitive

1 4 - 3 00: Normal

10: Digits at lower position

11: Digits at upper position

1 2 - 1 00: Normal

10: Capital lock keyboard

11: Shift lock keyboard

1 0 1: Use numeric keypad to transmit digits

0: Use alpha-numeric key to transmit digits

2 7 Special keyboard mode

1: Bypass

0: Apply

2 6 - 1 Inter-character delay (unit: 5ms)

2 0 HID character transmit mode

1: By character

0: Batch processing

200

CipherLab C Programming Part II

WedgeSetting[0]: It is used to determine which type of keyboard wedge is applied, and the
possible value is listed below.

Setting Value Terminal Type Setting Value Terminal Type

0 Null (Data Not Transmitted) 8 PCAT (BE)

1 PCAT (US) 9 PCAT (SP)

2 PCAT (FR) 10 PCAT (PO)

3 PCAT (GR) 11 IBM A01-02 (Japanese OADG109)

4 PCAT (IT) 12 PCAT (Turkish)

5 PCAT (SV) 13 PCAT (Hungarian),
8200/8400/8700

6 PCAT (NO) 14 PCAT
(Swiss(German)),8200/8400/8700

7 PCAT (UK) 15 PCAT (DA), 8200

WedgeSetting[1]: For details, refer to Part I: 2.4 Keyboard Wedge.

WedgeSetting[2]: It is used to configure how it sends data to the host, either by character or
batch processing.

Set Communication Type

Call SetCommType (5, COMM_USBHID) to set COM5 for USB HID communication.

Open COM Port

Call open_com (5, setting) to initialize the COM port, where the setting parameter is of no use.

Check Connection

Call com_eot (5) to detect if the connection is completed. For example,

while (1) {

 if (com_eot(5)) break;

 OSTimeDly(4);

}

Transmit Data

Call write_com(5, *data) or nwrite_com(5, *data, len) to transmit data.

Check Transmission

Call com_eot(5) to check whether there is any transmission in progress. For example,

while (com_eot(5)); // wait till prior transmission completed

Close COM Port

Call close_com (5) to terminate USB communication.

 201

 Appendix IV Examples

USB MASS STORAGE DEVICE

Set Communication Type

Call SetCommType (5, COMM_USBDISK) to set COM5 for the use of USB removable disk.

Open COM Port

Call open_com (5, setting) to initialize the COM port, where the setting parameter is of no use.

Close COM Port

Call close_com (5) to terminate USB communication.

202

CipherLab C Programming Part II

 203

FTP RESPONSE

ORIGINAL

FTP messages are responses to FTP commands and consist of a 3-digit response code
followed by explanatory text. These messages are stored in the global array
szFTPReplyCode[256].

You may use the printf() function to get the message after executing an FTP command:

printf(“%s”, szFTPReplyCode);

SUMMARIZED WITH ERROR CODE

For DoFTP(), the message is stored in the global array szFTPResponseTbl[1024]. If an
error occurs, the error code will be appended to the message, indicating the error
condition encountered. Refer to Error Code below.

For example, the message could be “DoFTP OPEN OK!”, “FTPOpen Failed.”, etc. The latter
indicates the command is invalid and has caused an error.

Use the printf() function to get the message:

printf(“%s”, szFTPResponseTbl);

ERROR CODE

GENERAL ERROR

Command Error Code Description

(Any) 99 Invalid Command

CONNECT ERROR

Command Error Code Description

FTPOpen -3 Failed to resolve hostname to binary IP address

-4 Failed to connect to host

-5 Incorrect username

Appendix V
FTP RESPONSE & ERROR CODE

204

CipherLab C Programming Part II

 -6 Incorrect password

-10 Failed to set binary transfer mode

-20 Host IP is empty

-21 Username is empty

GET DIRECTORY ERROR

Command Error Code Description

FTPDir -131 Failed to open DIRList

-133 Failed to download file information at working directory

CHANGE DIRECTORY ERROR

Command Error Code Description

FTPCwd -132 Failed to change working directory at host

UPLOAD ERROR

Command Error Code Description

FTPSend 1 Local file name is empty

-134 Failed to find local file at terminal (= no file to send)

-135 Failed to send file to host

Command Error Code Description

FTPAppend 1 Local or remote file name is empty

-134 Failed to find local file at terminal (= no file to send)

-135 Failed to send file to host

DOWNLOAD ERROR

Command Error Code Description

FTPRecv 1 Local file name is empty

-131 Failed to open local file at terminal (= no file to save data)

-133 Failed to download file from host

#fOrMaT • 167
#mOdEm • 168
#SeRiAl • 168
#vErSiOn? • 169

A
accept • 22

B
bind • 24
BTInquiryDevice • 86
BTPairingTest • 87
BTPairingTestMenu • 88

C
CheckNetStatus • 61
clear_com • 12
close_com • 11
closesocket • 25
com_cts • 7
com_eot • 12
com_overrun • 12
com_rts • 7
connect • 26

D
DNS_resolver • 46
DoFTP • 136

F
fcntlsocket • 27
FreqDevListMenu • 88
FTPAppend • 155
FTPClose • 152
FTPCwd • 153
FTPDelete • 157
FTPDir • 152
FTPOpen • 151
FTPRecv • 156
FTPRename • 158
FTPSend • 154

G
Get36xxParameter • 91
GetBTConfig • 90
GetBTStatus • 90

GetGpsInfo • 131
gethostbyname • 28
GetNetConfig • 76
GetNetParameter • 55
GetNetStatus • 75
getpeername • 29
getsockname • 30
getsockopt • 31
GetUserWildCard • 160
GSMChangePINCode • 105
GSMCheckPINCode • 105
GSMModemGetRSSI • 107
GSMSetPINCodeLock • 106

H
htonl • 44
htons • 44

I
inet_addr • 33
inet_ntoa • 33
ioctlsocket • 33

L
listen • 34

N
Nclose • 16
NetClose • 60
NetInit • 59
Nopen • 17
Nportno • 46
Nread • 18
ntohl • 44
ntohs • 45
Nwrite • 19
nwrite_com • 14, 114

O
open_com • 10, 111

R
read_com • 13
recv • 36
recvfrom • 37

S
select • 38

INDEX

CipherLab C Programming Part II

send • 39
sendto • 40
Set36xxParameter • 93
SetACTone • 113
SetBTConfig • 90
SetCommType • 8
SetNetConfig • 77
SetNetParameter • 56
setsockopt • 41
SetUserWildCard • 160
shutdown • 42
socket • 43
socket_block • 46
socket_cansend • 47
socket_fin • 47
socket_hasdata • 47
socket_ipaddr • 48
socket_isopen • 48
socket_keepalive • 48
socket_noblock • 49
socket_push • 49
socket_rxstat • 49
socket_rxtout • 50
socket_state • 50
socket_testfin • 50
socket_txstat • 51
StartGps • 131
StopGps • 131

U
UnpackDBF • 159

W
WIFIScan • 78
write_com • 14, 115

	Release Notes
	Introduction
	Communication Ports
	1.1 Basics
	1.1.1 Communication Parameters
	1.1.2 Receive & Transmit Buffers

	1.2 Flow Control
	1.2.1 RTS/CTS
	1.2.2 XON/XOFF
	1.2.3 Functions

	1.3 Configure Settings
	1.3.1 Functions

	1.4 Open and Close COM
	1.4.1 Functions

	1.5 Read and Write Data
	1.5.1 Functions

	TCP/IP COMmunications
	2.1 Native Programming Interface
	2.1.1 Basics
	2.1.2 Functions

	2.2 Socket Programming Interface
	2.2.1 Basics
	2.2.2 Functions

	2.3 Byte Swapping
	2.3.1 Functions

	2.4 Supplemental Functions

	Wireless Networking
	3.1 Network Configuration
	3.1.1 Implementation
	3.1.2 Functions

	3.2 Initialization & Termination
	3.2.1 Overview
	3.2.2 Functions

	3.3 Network Status
	3.3.1 Functions

	IEEE 802.11b/g/N
	4.1 Structure
	4.1.1 NETCONFIG Structure
	4.1.2 WLAN_FLAG Structure
	4.1.3 NETSTATUS Structure
	4.1.4 RADIOSTATUS Structure
	4.1.5 Wi-Fi Hotspot Search Structure
	4.1.6 Wi-Fi Profile Structure

	4.2 Functions
	4.2.1 Obsolete Functions
	4.2.2 Scanning for Wi-Fi hotspots

	Bluetooth
	5.1 Bluetooth Profiles Supported
	5.2 Structure
	5.2.1 BTCONFIG Structure
	5.2.2 BT_FLAG Structure
	5.2.3 BTSEARCH Structure
	5.2.4 BTSTATUS Structure

	5.3 Functions
	5.3.1 Frequent Device List
	5.3.2 Inquiry
	5.3.3 Pairing
	5.3.4 Useful Function Call
	5.3.5 Obsolete Functions
	5.3.6 ACL functions

	GSM/GPRS
	6.1 Data Format
	6.2 Security
	6.2.1 PIN Procedure
	6.2.2 PUK Procedure

	6.3 GSM Programming Flow
	6.4 Structure
	6.4.1 GSMCONFIG Structure (GSM/GPRS)
	6.4.2 GPRS_FLAG Structure
	6.4.3 GSMSTATUS Structure (GSM/GPRS)

	6.5 Functions
	6.5.1 PIN-related
	6.5.2 GSM Signal Quality (RSSI)

	Acoustic Coupler
	7.1 Operation Modes
	7.1.1 Modem Mode
	7.1.2 DTMF Mode

	7.2 Functions

	Modem, Ethernet & GPRS Connection
	8.1 PPP via Modem Cradle/RS-232
	8.1.1 PPPCONFIG Structure

	8.2 Ethernet via Cradle
	8.3 GPRS via Cradle
	8.3.1 GSMCONFIG Structure
	8.3.2 GPRS_FLAG Structure

	USB Connection
	9.1 Overview
	9.1.1 USB HID
	9.1.2 USB Virtual COM
	9.1.3 USB Mass Storage Device

	9.2 Structure
	9.2.1 USBCONFIG Structure
	9.2.2 USB_FLAG Structure

	GPS Functionality
	10.1 Structure
	10.1.1 GPSINFO Structure

	10.2 Functions

	FTP Functionality
	11.1 Using DoFTP Function
	11.1.1 Function
	11.1.2 Log

	11.2 Editing Script File
	11.2.1 Remote File Information
	11.2.2 Local File Information
	11.2.3 Version Control
	11.2.4 Mandatory Flag
	11.2.5 Update Script File
	11.2.6 Update User Program
	11.2.7 Switch to a Different Server
	11.2.8 Wildcards for Remote File Name

	11.3 Structure
	11.3.1 FTP_Settings Structure

	11.4 Advanced FTP Functions
	11.4.1 Connect: FTPOpen
	11.4.2 Disconnect: FTPClose
	11.4.3 Get Directory: FTPDir
	11.4.4 Change Directory: FTPCwd
	11.4.5 Upload File: FTPSend, FTPAppend
	11.4.6 Download File: FTPRecv
	11.4.7 Delete Files from FTP Server: FTPDelete
	11.4.8 Rename Files on FTP Server: FTPRename
	11.4.9 UnpackDBF
	11.4.10 Wildcards for Remote File Name (User-Specified Sring)

	11.5 File Handling
	11.5.1 DAT Files
	11.5.2 DBF Files

	11.6 SD Card Access
	11.6.1 Directory
	11.6.2 File Name

	Cradle Commands
	Unknown Command

	Net Parameters by Index
	NETCONFIG & BTCONFIG
	Wireless Networking
	Bluetooth SPP, FTP, DUN

	GSMCONFIG
	PPPCONFIG
	USBCONFIG

	Net Status by Index
	Wireless Networking
	Bluetooth SPP, FTP, DUN
	GSM/GPRS

	Examples
	WLAN Example (802.11b/g)
	WPA Enabled for Security

	Bluetooth Examples
	SPP Master
	SPP Slave
	Wedge Emulator via SPP
	Bluetooth HID
	DUN
	DUN-GPRS
	FTP (8200 Only)
	ACL

	GSM/GPRS Examples
	GPRS
	GSM

	Acoustic Coupler Example
	USB Examples
	USB Virtual COM
	USB HID
	USB Mass Storage Device

	FTP Response & Error Code
	FTP Response
	Original
	Summarized with Error Code

	Error Code
	General Error
	Connect Error
	Get Directory Error
	Change Directory Error
	Upload Error
	Download Error

	Index

