

C Language Programming
Part I: Basics and Hardware Control

For 8 Series Mobile Computers

 Version 4.31

Copyright © 2007~2015 CIPHERLAB CO., LTD.
All rights reserved

The software contains proprietary information of CIPHERLAB CO., LTD.; it is provided
under a license agreement containing restrictions on use and disclosure and is also
protected by copyright law. Reverse engineering of the software is prohibited.

Due to continued product development this information may change without notice. The
information and intellectual property contained herein is confidential between CIPHERLAB
and the client and remains the exclusive property of CIPHERLAB CO., LTD. If you find
any problems in the documentation, please report them to us in writing. CIPHERLAB
does not warrant that this document is error-free.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying,
recording or otherwise without the prior written permission of CIPHERLAB CO., LTD.

For product consultancy and technical support, please contact your local sales
representative. Also, you may visit our web site for more information.

The CipherLab logo is a registered trademark of CIPHERLAB CO., LTD.

All brand, product and service, and trademark names are the property of their registered
owners.

The editorial use of these names is for identification as well as to the benefit of the
owners, with no intention of infringement.

CIPHERLAB CO., LTD.
Website: http://www.cipherlab.com

http://www.cipherlab.com/

Version Date Notes

4.31 Jun. 16, 2015 Part I

 Modified: 2.2.1 – ScannerDesTbl2[16] for 8400 added

 Modified: Appendix I –
SCANNERDESTBL2[]

*Byte 0 [bit 0~6] 8200/8400 added
*Byte 1 [bit 0~4] 8200/8400 added
*Byte 2 [bit 0~5] 8200/8400 added for Quiet Zone Check setting

 Modified: Appendix II –
SCAN ENGINE, CCD OR LASER (UPC/EAN Families)

*EAN-13 ADDON MODE: Byte 0 [bit 0~6] 8400 added
*ADDON SECURITY FOR UPC/EAN: Byte 1 [bit 0~4] 8400 added

for Addon security for UPC/EAN barcodes

Part II

 Modified: 1.4.1 – BT_ACL_DEVICE added

 Modified: 4.1.3 – Note for 8231 added

 Modified: 4.1.4 – Note for 8231 added

 Modified: Appendix III – Wireless Netorking: descriptions and
table updated with 8231

RELEASE NOTES

4.30 Mar. 06, 2015 Part I

 Modified: 2.2.1 – variable of ScannerDesTbl2[16] added

 Modified: 2.2.3 – descriptions for ScannerDesTbl2 added

 Modified: 2.4.1 – 3rd ELEMENT: INTER-CHARACTER DELAY (time
range & example revised)

 Modified: Appendix I –
Replace ”Symbology Parameter Table I” with “Symbology Parameter
Table for CCD/LASER/Long Ranger Reader” section title,
and ”Symbology Parameter Table II” with “Symbology Parameter
Table for 2D/Extra Long Ranger Reader” section title

 Modified: Appendix I – “Symbology Parameter Table for
CCD/LASER/Long Ranger Reader”  ScannerDesTbl2[]: Bytes 2 ~
15 reserved for 8200

 Modified: Appendix I – “Symbology Parameter Table for 2D/Extra
Long Ranger Reader”  ScannerDesTbl[]: Bytes 45 ~ 47 reserved
for 8200/8300/8400/8700; Bytes 45 ~ 82 reserved for 8500

 Modified: Appendix II – ScannerDesTbl2[] (bytes 0 & 1) added in
UPC/EAN Families

Part II

- None –

4.29 Dec. 16, 2014 Part I

- None –

Part II

 Modified: 1.3.1 – COMM_RF of SetCommType revised

 Modified: 5.1 – CipherLab ACL Packet Data added

 Modified: 5.2.1 – ACL36xx[16], ReservedByte[204]

 New: 5.3.6 ACL Functions

 Modified: Appendix IV – ACL added in Bluetooth Examples section

 Modified: Appendix IV – Bluetooth HID/USB HID: Subscript 2, Bit 7
& 6-1 added; keyboard wedge type “15” added

4.28 Sep. 19, 2014 Part I

 Modified: 2.10.1 – 8300 supports the “putch” function

 Modified: 2.11.6 - SHAPE_FILL of circle/rectangle corrected

 Modified: 2.15.7 DBF Files and IDX Files –
lseek_DBF/member_in_DBF/tell_DBF: on error, it returns -1
rebuild_index: ruturns 1 for success; returns 0 for failure

Part II

- None –

4.27 Mar. 28, 2014 Part I

 Modified: Appendix I - Symbology Table I: Byte 11, bit 5 (GTIN
-> GTIN-14)

 Removed: Appendix I - Symbology Table II: Byte 44, bit 2 (GS1
formatting for GS1 DataMatrix)

 Modified: Appendix II – Scan Engine, CCD or Laser - GTIN: Byte
11, bit 5 (GTIN -> GTIN-14)

 Removed: Appendix II – 2D SCAN ENGINE ONLY:

>2D SYMBOLOGIES | MAXICODE, DATA MATRIX & QR CODE: Byte
44, Bit 2

Part II

 Modified: 4.1.1 NETCONFIG Structure – parameters added

 Modified: Appendix II – Wireless Networking table – indexes
57, 58, 91, 92, 93 added

4.26 Feb. 12, 2014 Part I

 Modified: 2.2.1 Barcod Decoding –
>ScannerDesTbl[45] for 8300
>FsEAN128[2], AIMark[2] arrays added

 Modified: 2.10 KEYPAD | 2.10.1 GENERAL –

>8000 supports OSKToggle, SetTrigger commands

 Modified: 2.10 KEYPAD | 2.10.6 Enter Key –

>SetMiddleEnter command added for 8400/8700

>SetPistolEnter command added for 8200/8700

 Modified: 2.13 Fonts | 2.13.4 Special Fonts –

>8200/8400/8700 support Turkish (SetLanguage command)

 Modified: Appendix I – SCANNERDESTBL ARRAY
SYMBOLOGY PARAMETER TABLE I

>Byte 4, Bit 2: Code39 security

>Byte 7, Bit 2: GS1 formatting for EAN-128

>Byte 7, Bit 1: GS1 formatting for GS1 DataBar Family

>Byte 11, Bit 6: Convert EAN8 to EAN13 Format

SYMBOLOGY PARAMETER TABLE II

>Byte 7, Bit 2: GS1 formatting for EAN-128

>Byte 25, Bit 4: Enable/Disable TCIF Linked Code 39 ->‘0’ (default)

>Byte 43, Bit 7~5 added

>Byte 44, Bit 7~3 added

 Modified: Appendix II Symbology Parameters –
Scan Engine, CCD or Laser

>Code39: Byte 4, Bit 2

>CODE 128/EAN-128/ISBT 128: Byte 7, Bit 2

>GS1 DataBar FAMILY: Byte 7, Bit 1

>UPC/EAN FAMILIES: Byte 11, Bit 6

>UPC/EAN FAMILIES: UPC-E Triple Check descriptions

SCAN ENGINE, 2D OR (EXTRA) LONG RANGE LASER

>CODE 128 | UCC/EAN-128: Byte 7, Bit 2

>GS1 DataBar FAMILY: Byte 44, Bit 7~5

2D SCAN ENGINE ONLY

>COMPOSITE CODES | CC-A/B/C: Byte 44, Bit 4~3

>2D SYMBOLOGIES | MAXICODE, DATA MATRIX & QR CODE: Byte
44, Bit 2

 Modified: Appendix III Scanner Parameters –

>USER PREFERENCES: Byte 43, Bit 7

>READ REDUNDANCY: Byte 43, Bit 6~5

Part II

- None –

4.25 Mar 27, 2013 Part I

 Modified: Introduction – the mention of “Chapter 5 Simulator”
removed

 Modified: 2.2.2 Code Type – CodeType Table II: add 8400/8700 2D
scan engine to Composite_CC_A/B/C symbologies (Decimal
47/55/118)

 Modified: 2.4.1 WedgeSetting[0] setting value table updated
(11~14)

 Modified: 2.10.1 OSKToggle (8400/8700 models supported)

 Modified: 2.15.9 GetFileInfo (8400/8700 models supported)

 Modified: Appendix I – Symbology Parameter Table II: add
8400/8700 2D scan engine to Bit 0 of Byte 9 (Convert UPC-A to
EAN-13)

 Modified: Appendix II – Scan Engine, 2D or (Extra) Long Ranger
Laser – UPC/EAN Families: add 8400/8700 2D scan engine to Bit 0
of Byte 9 (Convert UPC-A to EAN-13)



Part II

 Modified: Introduction – the mention of “Chapter 5 Simulator”
removed

 Modified: 2.2.2 Socket function – parameters of SOCK_RAW type &
ICMP protocol removed

4.24 Dec. 21, 2012 Part I

 Modified: 2.2.2 CodeType Tbale II – Composite_CC_A/B/C added

 Added: 2.10 Keypad – OSKToggle command added

 Modified: 2.13.1 Font Size – 20X20 added

 Modified: 2.13.4 Special Fonts – CheckFont, GetFont, SetFont
modified

 Added: 2.15.9 Get File Information – GetFileInfo command added

 Modified: Appendix I – Symbology Parameter Table II – bit 0 of
Byte 9 added with “8200 2D” scan engine

 Modified: Appendix II – SCAN ENGINE, 2D OR (EXTRA) LONG
RANGE LASER – UPC/EAN Families – “8200 2D” scan engine added

Part II

- None –

4.23 Jun. 20, 2012 Part I

 New: 2.10.1 General: SetTrigger – 8200/8400/8700 get supported

 New: 2.11 LCD: GetBklitLevel(), SetBklitLevel(), SetAutoBklit() –
8400/8700 gets supported

 New: Add 8700-Long Range followed to CCD, Laser

Part II

 New: 4.1.2 ScanTime and Reservedflag Parameters

 New: 4.1.6 Wi-Fi Profile Structure

 New: Appendix II 48~56 indexes including Note and Example

 New: Appendix IV Examples: HID/USB HID – 8400/8700 gets
supported

4.22 Apr. 26, 2012 Part I

 2.11.1 Properites— add Get/Set BklitLevel and SetAuto Bklit for
8200 and modify lcd_backlit configurations

Part II

 Add PCAT - Swiss(German) and Hungarian for 8200

4.21 Mar. 14, 2012 Part I

 Modified: Appendix I ScannerDesTbl Array | Symbology
Parameter Table II - Note: MSI and Code 11 are disabled for 8400
2D scan engine by default

 Modified: Appendix II Symbology Parameters | Scan Engine,
2D or (Extra) Long Range Laser - Note: MSI and Code 11 are
disabled for 8400 2D scan engine by default.

Part II

 Modified: 4.1.5. “Wi-Fi Hotspot Search Structure” - 8700 gets
supported

 Modified: 4.2.2. “Scanning for Wi-Fi Hotspots” - 8700 gets supported

 Modified: 11.4.7. “Delete Files from FTP Server: FTPDelete” - 8700
gets supported

 Modified: 11.4.8. “Rename Files on FTP Server: FTPRename”

 - 8700 gets supported

 - Parameter *NewFileName changes to *RemoteNewFile

 - Parameter *OldFileName changes to *RemoteOldFile

 Modified: 11.1.1 “Function” - DoFTP supports FTPDelete() and
FTPRename().

4.20 Dec. 12, 2011 Part I

 New: 2.17 “Graphical User Interface” (for 8700 only)

 Modified: “8780” removed from the manual.

Part II

 New: 4.1.5. “Wi-Fi Search Device Structure” for 8200 & 8400.

 New: 4.2.2. “Scannig for Wi-Fi Devices” for 8200 & 8400.

 New functions FTPDelete() and FTPRename() added, updates
involved are:

 Sections 11.0, 11.1.2, 11.2, 11.2.3, 11.3, 11.4 & Index modified.

 Sections 11.4.7 & 11.4.8 newly inserted.

 Modified: 11.1.1. Parameter “via3dot5G” newly added to DoFTP
function.

 Modified: “8780” removed from the manual.

4.10 Jul. 07, 2011 Part I

 Modified: 2.14 Memory — 8700’s updated

Part II

 Modified: 5.1 Bluetooth Profiles Supported — Bluetooth HSP for 8200
removed

 Modified: Appendix IV Examples — Bluetooth HSP (8200 Only)
removed

4.00 Mar. 21, 2011 C Programming Guide split into Part I: Basics and Hardware Control, and
Part II: Data Communications

 Modified: add 8200 support

 Modified: add 8700 support

 Modified: remove 8580/8590

 Part I

 1.3.3 Floating Types — add “About Floating-Point”

 2.1.4 System Information — 8200 only has 8200lib.lib

 2.1.4 System Information — BootloaderVersion() for 8200

 2.1.6 Program Manager — UpdateBootloader() for 8200

 2.1.6 Program Manager — UpdateKernel() for 8200

 2.5 Buzzer — on_beeper() for 8200, set_beeper_vol() allows setting
8200’s speaker mute

 2.10.5 FN Key — Auto Resume mode for 8300 allows re-pressing the
function key to exit the function mode

 2.10.6 ENTER Key — for 8200 only

 2.10.6 ENTER Key — SetMiddleEnter()

Part II

 Add support of Bluetooth HSP and FTP for 8200

 1.3.1 Functions — SetCommType() supports USB Virtual COM_CDC
and Bluetooth HSP for 8200

 9.1.2 USB Virtual COM — add support of USB Virtual COM_CDC for
8200

 10 GPS Functionality — add support of GPS for 8700

 11 FTP Functionality

CONTENTS

RELEASE NOTES .. - 3 -

INTRODUCTION.. 1

DEVELOPMENT ENVIRONMENT .. 3
1.1 Directory Structure & Variables ... 4

1.1.1 Directory Structure .. 4
1.1.2 Environment Variables ... 6

1.2 Development Flow ... 7
1.2.1 Create Your Own C Source Program ... 8
1.2.2 Compile... 9
1.2.3 Link .. 10
1.2.4 Format Conversion ... 13
1.2.5 Download Program to Flash Memory .. 13

1.3 C Compiler .. 14
1.3.1 Size of Types .. 14
1.3.2 Representation Range of Integers ... 14
1.3.3 Floating Types .. 15
1.3.4 Alignment .. 17
1.3.5 Register and Interrupt Handling ... 17
1.3.6 Reserved Words .. 17
1.3.7 Extended Reserved Words .. 18
1.3.8 Bit-Field Usage .. 18

MOBILE-SPECIFIC FUNCTION LIBRARY .. 21
2.1 System ... 22

2.1.1 General ... 22
2.1.2 Power On Reset (POR).. 26
2.1.3 System Global Variables .. 27
2.1.4 System Information ... 30
2.1.5 Security .. 37
2.1.6 Program Manager ... 39
2.1.7 Download Mode ... 49
2.1.8 Menu Design ... 50

2.2 Barcode Reader .. 54
2.2.1 Barcode Decoding ... 54
2.2.2 Code Type.. 58
2.2.3 Scanner Description Tables .. 62

2.3 RFID Reader .. 63
2.3.1 Virtual COM ... 64
2.3.2 RFIDParameter Structure .. 65
2.3.3 RFID Data Format .. 65
2.3.4 RFID Authentication .. 67

2.4 Keyboard Wedge .. 69

CipherLab C Programming Part I

2.4.1 Definition of the WedgeSetting Array ... 71
2.4.2 Composition of Output String .. 74
2.4.3 Wedge Emulator.. 76

2.5 Buzzer .. 77
2.5.1 Beep Sequence .. 77
2.5.2 Beep Frequency ... 77
2.5.3 Beep Duration .. 77

2.6 LED Indicator ... 81
2.7 Vibrator & Heater ... 82

2.7.1 Vibrator ... 82
2.7.2 Heater ... 83

2.8 Real-Time Clock ... 84
2.8.1 Calendar ... 84
2.8.2 Alarm ... 86

2.9 Battery & Charging ... 87
2.9.1 Battery Voltage ... 87
2.9.2 Charging Status .. 88

2.10 Keypad .. 90
2.10.1 General ... 90
2.10.2 ALPHA Key .. 95
2.10.3 SHIFT Key ... 98
2.10.4 ALT Key .. 99
2.10.5 FN Key .. 100
2.10.6 ENTER Key .. 103

2.11 LCD ... 104
2.11.1 Properties .. 104
2.11.2 Cursor ... 112
2.11.3 Display .. 114
2.11.4 Clear .. 120
2.11.5 Image ... 122
2.11.6 Graphics ... 124

2.12 Touch Screen .. 127
2.12.1 ItemProperty Structure ... 127
2.12.2 Example ... 130

2.13 Fonts .. 131
2.13.1 Font Size .. 131
2.13.2 Display Capability .. 131
2.13.3 Multi-Language Font ... 132
2.13.4 Special Fonts .. 132
2.13.5 Font Files ... 136

2.14 Memory ... 138
2.14.1 Flash .. 138
2.14.2 SRAM... 140
2.14.3 SD Card .. 141

2.15 File Manipulation.. 142
2.15.1 File System ... 142

CipherLab C Programming Part I

2.15.2 Directory .. 142
2.15.3 File Name .. 142
2.15.4 File Handle (File Descriptor) .. 143
2.15.5 Error Code ... 143
2.15.6 DAT Files.. 147
2.15.7 DBF Files and IDX Files .. 161
2.15.8 File Transfer via SD Card .. 178
2.15.9 Get File Information .. 185
2.15.10 DEVICE_FILEINFO Structure ... 187

2.16 SD Card ... 191
2.16.1 File System ... 192
2.16.2 Directory .. 193
2.16.3 File Name .. 195
2.16.4 FILEINFO Structure ... 196
2.16.5 SD Card Manipulation ... 197
2.16.6 Mass Storage Device .. 215
2.16.7 Error Code ... 216

2.17 Graphical User Interface .. 219
2.17.1 Text Center Alignement ... 220
2.17.2 Title.. 221
2.17.3 Background .. 222
2.17.4 Form or Dialog .. 223
2.17.5 Field Settings ... 226
2.17.6 Input Field ... 231
2.17.7 Touchpad ... 234
2.17.8 Get Character for Soft Key ... 237
2.17.9 Field with Touchpad .. 238
2.17.10 Multi-Line Input (Text Box) with Touchpad .. 241
2.17.11 Signature Box ... 243
2.17.12 Tab List .. 245
2.17.13 List Box .. 248
2.17.14 Combo List ... 251
2.17.15 Pop-up Menu ... 254
2.17.16 Message Box.. 257
2.17.17 Memo Box ... 259
2.17.18 Calendar .. 260
2.17.19 Graphical Information .. 262
2.17.20 S_Button Structure ... 263
2.17.21 S_FormField Structure... 264
2.17.22 S_MenuData Structure .. 265

STANDARD LIBRARY ROUTINES .. 267

REAL-TIME KERNEL .. 273

SCANNERDESTBL ARRAYS .. 281
Symbology Parameter Table for CCD/LASER/Long Range Reader 281

ScannerDesTbl[] ... 281
ScannerDesTbl2[]... 289

CipherLab C Programming Part I

Symbology Parameter Table for 2D/Extra Long Range Reader 290
ScannerDesTbl[] ... 290

SYMBOLOGY PARAMETERS ... 303
Scan Engine, CCD or Laser .. 303

Codabar .. 303
Code 2 of 5 Family ... 304
Code 39 .. 307
Code 93 .. 308
Code 128/EAN-128/ISBT 128 .. 309
Italian/French Pharmacode .. 309
MSI ... 310
Negative Barcode ... 311
Plessey .. 311
GS1 DataBar (RSS) Family ... 312
Telepen ... 313
UPC/EAN Families ... 313

Scan Engine, 2D or (Extra) Long Range Laser .. 319
Codabar .. 319
Code 2 of 5 ... 320
Code 39 .. 321
Code 93 .. 322
Code 128 ... 323
MSI ... 323
GS1 DataBar (RSS) Family ... 325
UPC/EAN Families ... 326
UCC Coupon Code .. 328
Joint Configuration ... 328
Code 11 .. 330

2D Scan Engine Only.. 331
1D Symbologies .. 331
Composite Codes .. 334
2D Symbologies .. 336

SCANNER PARAMETERS ... 339
Scan Mode .. 339

Comparison Table ... 340
Read Redundancy .. 342
Time-Out ... 343
User Preferences .. 343

INDEX .. 345

 1

This C Programming Guide describes the application development process with the “C”
Compiler in details. It starts with the general information about the features and usages
of the development tools, the definition of the functions/statements, as well as some
sample programs.

This programming guide is meant for users to write application programs for CipherLab 8
Series Mobile Computers by using the “C” Compiler. It is organized in chapters giving
outlines as follows:

Part I: Basics and Hardware Control

Chapter 1 “Development Environment” – gives a concise introduction about the “C” Compiler
and the development flow for applications, which provides step-by-step description in
developing application programs for the mobile computers with the “C” Compiler.

Chapter 2 “Mobile-specific Function Library” – presents callable routines that are specific to the
features of the mobile computers. For data communications, refer to Part II.

Chapter 3 “Standard Library Routines” – briefly describes the standard ANSI library routines
about which more detailed information can be found in many ANSI related literatures.

Chapter 4 “Real Time Kernel” – discusses the concepts of the real time kernel, µC/OS. Users can
generate a real time multi-tasking system by using the µC/OS functions.

Part II: Data Communications

Chapter 1 “Communication Ports”

Chapter 2 “TCP/IP Communications”

Chapter 3 “Wireless Networking”

Chapter 4 “IEEE 802.11b/g”

Chapter 5 “Bluetooth”

Chapter 6 “GSM/GPRS”

Chapter 7 “Acoustic Coupler”

Chapter 8 “Modem, Ethernet & GPRS Connection”

Chapter 9 “USB Connection”

Chapter 10 “GPS Functionality”

Chapter 11 “FTP Functionality”

INTRODUCTION

2

CipherLab C Programming Part I

 3

The C Language Development Kit for CipherLab 8 Series Mobile Computers contains six
directories, namely, BIN, ETC, INCLUDE, LIB, README and USER. To set up the C
language development environment on your PC, you may create the \C_Compiler
directory from the root directory first. Then, simply copy the above six directories from
the CD-ROM to the \C_Compiler directory.

To run the compiler, one of the Windows operating systems is required:

 Windows 2000
 Windows XP
 Windows Vista
 Windows 7

IN THIS CHAPTER

1.1 Directory Structure & Variables 4
1.2 Development Flow... 7
1.3 C Compiler ... 14

Chapter 1
DEVELOPMENT ENVIRONMENT

4

CipherLab C Programming Part I

1.1 DIRECTORY STRUCTURE & VARIABLES

1.1.1 DIRECTORY STRUCTURE

The purposes and contents of each directory are listed below.

BIN

This directory contains executable files. Usage will be described further in later sections.

 The BIN folder is for Windows 2000 and Windows XP.

 The BIN for Vista-Win7 folder is for Windows Vista and Windows 7.

 A number of execution files for compilation, linking, and so on.

ASM900.EXE CC900.EXE EZDRIVER.DLL MAC900.EXE

THC1.EXE THC2.EXE TUAPP.EXE TUCONV.EXE

TUFAL.EXE TULIB.EXE TULINK.EXE TUMPL.EXE

Note: Depending on your operation system, please make sure to use the correct link file.

ETC

This directory contains help and version information of the C Compiler.

 5

 Chapter 1 Development Environment

INCLUDE

This directory contains header files.

 1 header file for mobile-specific library: e.g. 8500lib.h

 1 header file for Real-Time Kernel Library: UCOS.H

 “C” header files for standard library routines:

CTYPE.H ERRNO.H FLOAT.H LIMITS.H MATH.H

STDARG.H STDDEF.H STDIO.H STDLIB.H STRING.H

TCPIP.H

LIB

This directory contains library object code files.

 “C” standard library: C900ml.lib

 Mobile-specific library: 8000lib.lib, 8200lib.lib, 8300lib.lib, 8400lib.lib, 8500lib.lib and 8700lib.lib

Readme

This directory contains C Compiler version update and supplemental information.

Sample Program

This directory contains source code of the user program or other sample programs.

Download Utilities

This directory contains utilities for downloading a program (.SHX, .SYN) or font file (.SHX) to the
mobile computer.

Note: USB Virtual COM also shares the interface option of RS-232/IrDA.

Font

This directory contains available font files.

Kernel

This directory contains kernel programs.

Link File

This directory contains link files for (1) Windows 2000, XP and (2) Windows Vista, Windows 7.

Manual

This directory contains programming documents.

6

CipherLab C Programming Part I

1.1.2 ENVIRONMENT VARIABLES

Before using the compiler, some environmental variables must be added to
autoexec.bat.

 path = C:\C_Compiler\BIN (or your own path)

So that all executable files (.EXE and .BAT) can be found.

 set THOME = C:\C_Compiler\

This is a must for the compiler to locate all necessary files.

 set tmp = C:\tmp

This is the temporary working directory for the compiler and linker (for memory and
file swapping). Skip this if tmp is already specified.

 7

 Chapter 1 Development Environment

1.2 DEVELOPMENT FLOW

The development process is much like writing any other C programs on PC. The flow is
illustrated as below.

8

CipherLab C Programming Part I

1.2.1 CREATE YOUR OWN C SOURCE PROGRAM

The first step is to create or modify the desired C programs using any text editors. We
recommend that you use “.C” as the file extension and create program files under the
USER directory so that you can use the USER directory as the working directory. We
also recommend that you divide the whole program into modules while retaining function
integrity, and put modules into separate files to reduce compilation time.

 9

 Chapter 1 Development Environment

1.2.2 COMPILE

To compile the C programs, use cc900 command in the directory of the target file. For
the usage of cc900 command and the options, please refer to “cc900.hlp” in the ETC
subdirectory.

Cc900 –[options] FILENAME.C

The batch file “Y.BAT” which can be found under the USER directory has been created to
simplify the compiling process.

Y FILENAME.C

This batch file invokes the C compilation program which in turn calls many other
executable programs under the BIN directory. As these programs are invoked by the
compiler sequentially, their usages can be ignored. Also, many parameters are set in
calling the compiler driver to accommodate target machine environments. It is
recommended to use the Y.BAT file directly. If you attempt to write your own batch file,
remember to put the same parameters as shown below.

 -XA1, -XC1, -XD1, -Xp1: alignment setting, all 1
 -XF: no deletion of assembly file, if it is not necessary to examine the assembly file.

This option can be removed.
 -O3: set optimization level (can be 0 to 3, but not the maximum optimization). If

code size and performance is not a problem, this option can be removed which will
then set to the default – O0, that is, no optimization at all. If optimization is enabled,
care must be taken that some instructions might be optimized and removed. For
example,
Test()

{

unsigned int old_msec;

old_msec = sys_msec;

while (old_msec == sys_msec);

}

This routine waits until sys_msec is changed. And sys_msec is a system variable that is
updated each 5 milliseconds by background interrupt. If optimization is enabled, this
whole routine is truncated as it is meaningless (which is a dead-loop). To avoid this, the
type identifier “volatile” can be used to suppress optimization.

 -c: create object but no link
 -e cerr.lst: create error list file “CERR.LST”

After compilation is completed, a relocatable object file named “program_name.REL” is
created which can be used later by the linker to create the executable object program. As
the compiler compiles the program into assembler form during the process, an
accompanying assembler source file “program_name.ASM” is also created. This file helps
in debugging if necessary. If any error occurs, they will be put into the file “CERR.LST”
for further examination.

10

CipherLab C Programming Part I

1.2.3 LINK

If the C source programs are successfully compiled into relocatable object files, the linker
must be used to create the absolute objects, and then the file can be downloaded to the
target machine’s flash memory for execution. However, a linker map file must be
created.

TULINK FILENAME.LNK

This map file “FILENAME.LNK” is used to instruct the linker to allocate absolute addresses
of code, data, constant, and so on according to the target machine environments. This is
a lengthy process as it depends on the hardware architecture. Fortunately, a sample
linker map file is provided and few steps are required to customize it for your own need,
while leaving hardware-related stuff unchanged.

From the following sample linker file, you can see that only the file names need to be
changed (underlined & boldfaced sections). If the linking is successful, an absolute object
file named “FILE1.ABS” is created. Besides, a file named “FILE1.MAP” lists all code and
variable addresses, and, error messages if there is any.

Sample Linker File
-lm –lg –ll /* For Windows 2000, XP: parameters for TULINK, do not change */

 /* For Windows Vista, Windows 7: remove “-lg” */

File1.rel /* your C program name */

File2.rel /* your C program name */

......

......

FileN.rel /* your C program name */

..\lib\8xxxlib.lib /* 8xxx function library */

..\lib\c900ml.lib /* C standard library */

/***/

/* User could provide suitable values */

/* to the following variables */

/***/

MainStackSize = 0x001000;

HeapSize = 0x000100;

MaxSysRamSize = 0x020000;

/***/

/* Do not modify anything beyond this line */

/***/

 11

 Chapter 1 Development Environment

memory

{

IRAM: org = 0x001100, len = 0x000e00 /* 0x1000 – 0x10ff IntVec */

 /* 0x1f00 – 0x1fff Stack */

RAM : org = 0x205000, len = 0x3b000

ROM : org = 0xf00000, len = 0x0e0000

}

sections

{

code org = 0xf00000 : {

 *(f_head)

 *(f_code)

} > ROM

area org = 0x205000 : {

 . += MainStackSize;

 . += HeapSize;

 *(f_bcr)

 *(f_area)

} > RAM

data org=org(code)+sizeof(code) addr=org(area)+sizeof(area) : {

 *(f_data)

} /* global variables with initial values */

xcode org = org(data) + sizeof(data) addr = addr(data) + sizeof(data) : {

 (f_xcode) / code reside on RAM */

}

RAM_OVERFLOW_CHECK org = org(area) + MaxSysRamSize : {

 . += 1;

} > RAM

icode org = org(xcode) + sizeof(xcode) addr = 0x001100 : {

 (f_icode) / code reside on IRAM */

}

12

CipherLab C Programming Part I

const org = org(icode) + sizeof(icode) : {

 *(f_const)

 *(f_tail)

} > ROM

}

ActualRamSize = (addr(xcode) + sizeof(xcode)+3)/4*4 – 0x205000 ;

 /* long boundary */

SysRamEnd = org(area) + MaxSysRamSize; /* long boundary */

DataRam = addr(data);

XcodeRam = addr(xcode);

IcodeRam = addr(icode);

HeapTop = org(area) + MainStackSize;

/* End */

 13

 Chapter 1 Development Environment

1.2.4 FORMAT CONVERSION

The absolute object file created by TULINK is in TOSHIBA’s own format. Before being
downloaded to the target machine, it must be converted to the Motorola S format by
using the “TUCONV” utility.

TUCONV –Fs32 –o FILENAME.shx FILENAME.abs

The file extension .SHX is a must for the code downloader.

The batch file “Z.BAT” which can be found under the USER directory has been created to
simplify the linking and format conversion process. Simply run the batch file:

Z

The target executable file (with SHX extension) will then be generated if no error is
found.

1.2.5 DOWNLOAD PROGRAM TO FLASH MEMORY

Now that the Motorola S format object file FILENAME.shx is created successfully, it can
be downloaded to the flash memory for testing. Run the ProgLoad.exe utility and
configure the following parameters properly.

 File Name: Specify the absolute object file.

 COM Port: Select the appropriate COM port for transmission.

 Baud Rate: Supported baud rates are 115200, 57600, 38400, 19200, and 9600.

 Parity: None

 Data Bits: 8

 Flow Control: None

Note: The selected baud rate, parity, data bits, etc. must match the COM port settings of
the target machine.

14

CipherLab C Programming Part I

1.3 C COMPILER

This C compiler is for TOSHIBA TLCS-900 family 16-bit MCUs, and it is mostly ANSI
compatible. Some specific characteristics are presented in this section.

1.3.1 SIZE OF TYPES

Types Size in Byte

char, unsigned char 1

short int, unsigned short int, int, unsigned int 2

long int, unsigned long int 4

pointer 4

structure, union 4

1.3.2 REPRESENTATION RANGE OF INTEGERS

Regarding the representation range of the values of integer types, macros are defined in
the header file <limits.h> as follows.

Macro Name Contents

CHAR_BIT number of bits in a byte (the smallest object)

SCHAR_MIN minimum value of signed char type

SCHAR_MAX maximum value of signed char type

CHAR_MIN minimum value of char type

CHAR_MAX maximum value of char type

UCHAR_MAX maximum value of unsigned char type

MB_LEN_MAX number of bytes in a wide character constant

SHRT_MIN minimum value of short int type

SHRT_MAX maximum value of short int type

USHRT_MAX maximum value of unsigned short int type

INT_MIN minimum value of int type

INT_MAX maximum value of int type

UINT_MAX maximum value of unsigned int type

LONG_MIN minimum value of long int type

LONG_MAX maximum value of long int type

ULONG_MAX maximum value of unsigned long int type

 15

 Chapter 1 Development Environment

1.3.3 FLOATING TYPES

Float data types are supported and conform to IEEE standards.

Types Size in Bits

float 32

double 64

long double 80

About Floating-Point

Every decimal integer can be exactly represented by a binary integer; however, this is not true for
fractional numbers. It is therefore very important to realize that any binary floating-point system
can represent only a finite number of floating-point values in exact form. All other values must be
approximated by the closest representable value. For example, even common decimal fractions,
such as decimal 0.0001, cannot be represented exactly in binary. (0.0001 is a repeating binary
fraction with a period of 104 bits!)

// Floating-point error

float A = 99999.1;

float B = 99999.0;

printf(“%.04f”, A); // It prints “99999.1016” instead of “99999.1000”.

printf(“%.04f”,(A-B) * 100); // It prints “10.1563” instead of “10”.

printf("(A-B)==0.1?%s.",((A-B)==0.1)?"Equal":"Not Equal");

 // It prints “(A-B)==0.1?Not Equal”.

We suggest not handling floating-point values directly but converting them to integers first. After
calculations, convert integers to real numbers if necessary. For example, in order to process the
expression of 1.82-1.8, you are advised to modify the expression to something like 182-180, and
then divide the result by 100 to get the actual result of 0.02.

When the floating-point values are displayed, printed, or used in calculations, they lose precision.
Instead of using floating-point, use integer or long to perform arithmetical or logical calculations. If
there is a need to display a fractional number on the screen, convert the integer or long to a string
and add the decimal point in the proper place. For example,

long A=999991;

long B=999990;

long C=(A-B)*100;

printf("[%ld.%ld]",A/10,A%10); // It prints “99999.1”.

printf("[%ld.%ld]",C/10,C%10); // It prints “10.0”.

16

CipherLab C Programming Part I

IEEE Format

Float is an approximate numeric data type, as defined by the standards. Floating-point
representations have a base and a precision p. If base is 10 and p is 3, then the number 0.1 is
represented as 1.00 × 10-1. If base is 2 and p is 24, then the decimal number 0.1 cannot be
represented exactly, but is approximately 1.10011001100110011001101 × 2-4.

Precision refers to the number of digits that you can represent. The precision of the binary formats
is one greater than the width of its significand, because there is an implied (hidden) 1 bit. A “double
precision” (64-bit) binary floating-point number has a coefficient of 53 bits (one of which is
implied), an exponent of 11 bits, and one sign bit. Positive floating-point numbers in this format
have an approximate range of 10−308 to 10308 (because 308 is approximately 1023 × log10(2), since
the range of the exponent is [−1022,1023]). The complete range of the format is from about
−10308 through +10308.

Name Common Name Base Digits E min E max Decimal digits Decimal E max

binary32 Single precision 2 23+1 -126 +127 7.22 38.23

binary64 Double precision 2 52+1 -1022 +1023 15.95 307.95

 17

 Chapter 1 Development Environment

1.3.4 ALIGNMENT

Alignment of different types can be adjusted. This is to facilitate CPU performance by
trading off memory space. However, when all target systems utilize 8-bit data bus, the
alignment does not improve performance and is fixed to 1 for all types. In invoking the C
compiler, driver (-XA1, -XD1, -XC1, and –Xp1) is specified.

1.3.5 REGISTER AND INTERRUPT HANDLING

Register and interrupt handling are possible through C. However, they are prohibited as
all the accessing to system resources is supposed to be made via CipherLab library
routines.

1.3.6 RESERVED WORDS

These are the reserved words (common to all Cs) in general.

Auto break case char const

continue default do double else

enum extern float for goto

if int long register return

short signed sizeof static struct

switch typedef union unsigned void

volatile while

18

CipherLab C Programming Part I

1.3.7 EXTENDED RESERVED WORDS

These are the reserved words specific to this C compiler and all of them start with two
underscores (“_ _”).

_ _adcel _ _cdcel _ _near _ _far

_ _tiny _ _asm _ _io

_ _XWA _ _XBC _ _XDE _ _XHL

_ _XIX _ _XIY _ _XIZ _ _XSP

_ _WA _ _BC _ _DE _ _HL

_ _IX _ _IY _ _IZ _ _W

_ _A _ _B _ _C _ _D

_ _E _ _H _ _L _ _SF

_ _ZF _ _VF _ _CF

_ _DMAS0 _ _DMAS1 _ _DMAS2 _ _DMAS3

_ _DMAD0 _ _DMAD1 _ _DMAD2 _ _DMAD3

_ _DMAC0 _ _DMAC1 _ _DMAC2 _ _DMAC3

_ _DMAM0 _ _DMAM1 _ _DMAM2 _ _DMAM3

_ _NSP _ _XNSP _ _INTNEST

1.3.8 BIT-FIELD USAGE

The following types can be used as the bit field base types. The allocation is made as
shown in the illustrations.

Types Size in Bits

char, unsigned char 8

short int, unsigned short int, int, unsigned int 16

long int, unsigned long int 32

The bit-field can be very useful in some cases. However, if memory is not a concern, it is
recommended not to use the bit-fields because the code size is downscaled at the cost of
degraded performance.

 19

 Chapter 1 Development Environment

Fields Stored from the Highest Bits

Fields Stored from the Highest Bits

If the base type of a bit field member is a type requiring two bytes or more (e.g. unsigned int), the
data is stored in memory after its bytes are turned upside down.

Different Types (Different Size)

A bit field with different type is assigned to a new area.

20

CipherLab C Programming Part I

Different Types (signed/unsigned)

Different Types (Same Size)

 21

There are a number of mobile-specific library routines to facilitate the development of the
user program. These functions cover a wide variety of tasks, including communications,
show string or bitmap on the LCD, buzzer control, scanning, file manipulation, etc. They
are categorized and described in this section by their functions or the resources they
work on.

The function prototypes of the library routines, as well as the declaration of the system
variables, can be found in the library header file, e.g. “8300lib.h”. It is assumed that the
programmer has prior knowledge of the C language.

IN THIS CHAPTER

2.1 System .. 22
2.2 Barcode Reader .. 54
2.3 RFID Reader ... 63
2.4 Keyboard Wedge ... 69
2.5 Buzzer ... 77
2.6 LED Indicator ... 81
2.7 Vibrator & Heater .. 82
2.8 Real-Time Clock .. 84
2.9 Battery & Charging .. 87
2.10 Keypad .. 90
2.11 LCD ... 104
2.12 Touch Screen .. 127
2.13 Fonts ... 131
2.14 Memory ... 138
2.15 File Manipulation ... 142
2.16 SD Card ... 191
2.17 Graphical User Interface .. 219

Chapter 2
MOBILE-SPECIFIC FUNCTION LIBRARY

22

CipherLab C Programming Part I

2.1 SYSTEM

2.1.1 GENERAL

_KeepAlive__

Purpose To let the user program keep on running and prevent it from being
automatically shut down by the system.

Syntax void _KeepAlive__ (void);

Example ...

AUTO_OFF = 60;

_KeepAlive__();

...

// set 1 minute

// load the AUTO_OFF value

Return Value None

Remarks Whenever this routine is called, it will reset the counter governed by the global
variable AUTO_OFF, so that the user program will keep on running without
suffering from being automatically shut down by the system.

See Also AUTO_OFF

ChangeSpeed 8000, 8300

Purpose To change the CPU running speed.

Syntax void ChangeSpeed (int speed);

Parameters int speed int speed

1 Sixteenth Speed 4 Half Speed

2 Eighth Speed 5 Full Speed

3 Quarter Speed

Example ChangeSpeed(4); // Set CPU speed to half speed

Return Value None

Remarks When high speed operation is not necessary, selecting a slow CPU speed can
save battery power.

 23

 Chapter 2 Mobile-Specific Function Library

CheckWakeUp 8000, 8200, 8400, 8700

Purpose To check whether a wakeup event occurs not.

Syntax int CheckWakeUp (void);

Example event = CheckWakeUp();

Return Value For 8000 Series, the return value can be one of the following:

Return Value

0 No wakeup event.

1 POWER_KEY_PRESSED The POWER key is pressed.

2 CHARGE_OK Charging process has been completed.

3 TIME_IS_UP The alarm time is up.

 For 8400 Series, the return value can be one of the following:

Return Value

0 No wakeup event.

2 RS232_CABLE_DETECTED RS-232 cable is detected.

4 CHARGING Charging process is ongoing.

8 CHARGE_OK Charging process has been completed.

16 POWER_KEY_PRESSED The POWER key is pressed.

32 TIME_IS_UP The alarm time is up.

64 USB_DETECTED USB cable is detected.

128 RS232_DATA_RXED Data is received via RS-232.

For 8200/8700 Series, the return value can be one of the following:

Return Value

0 No wakeup event.

2 RS232_CABLE_DETECTED RS-232 cable is detected.

4 CHARGING Charging process is ongoing.

8 CHARGE_OK Charging process has been completed.

16 POWER_KEY_PRESSED The POWER key is pressed.

32 TIME_IS_UP The alarm time is up.

64 USB_DETECTED USB cable is detected.

24

CipherLab C Programming Part I

GetIOPinStatus 8200, 8400, 8700

Purpose To check the I/O pin status.

Syntax unsigned int GetIOPinStatus (void) ;

Example iStatus = GetIOPinStatus();

if (iStatus&0x10)

printf(“RS232 cable is connected.”);

else if (iStatus&0x20)

printf(“USB cable is connected.”);

if (iStatus&0x40)

printf(“Adapter is connected.”);

Return Value An unsigned integer is returned, summing up values of each item.

Remarks Each bit indicates a certain item as shown below.

Bit Value Item Remarks

0~
3

0x00 NO_CRADLE Not seated in any cradle.

0x01 MODEM_CRADLE Seated in the Modem Cradle.

0x02 ETHERNET_CRADLE Seated in the Ethernet Cradle.

0x03 GPRS_CRADLE Seated in the GPRS/GSM Cradle.

0x04 CHARGER_CRADLE Seated in the standard cradle —
Charging & Communication Cradle.

4 0x00 RS232_CABLE_
DISCONNECTED

RS-232 cable is not connected.

0x10 RS232_CABLE_
CONNECTED

RS-232 cable is connected.

5 0x00 USB_CABLE_
DISCONNECTED

USB cable is not connected.

0x20 USB_CABLE_
CONNECTED

USB cable is connected.

6 0x00 ADAPTER_
DISCONNECTED

5V DC adapter is not connected.

0x40 ADAPTER _CONNECTED 5V DC adapter is connected.

 25

 Chapter 2 Mobile-Specific Function Library

SetPwrKey

Purpose To determine whether the POWER key serves to turn off the mobile computer
or not.

Syntax void SetPwrKey (int mode);

Parameters int mode

0 POWER_KEY_DISABLE The POWER key is disabled.

1 POWER_KEY_ENABLE The POWER key is enabled.

Example SetPwrKey(1);

Return Value None

shut_down

Purpose To shut down the system.

Syntax void shut_down (void);

Example shut_down();

Return Value None

Remarks You will have to manually press the POWER key to restart the system.

See Also system_restart

SysSuspend

Purpose To enter the suspend mode.

Syntax void SysSuspend (void);

Example SysSuspend();

Return Value None

Remarks When a wakeup event occurs, the system may resume or restart itself,
depending on the system setting.

system_restart

Purpose To restart the system.

Syntax void system_restart (void);

Example system_restart();

Return Value None

Remarks This routine simply jumps to the Power On Reset point and restarts the system
automatically.

See Also shut_down

26

CipherLab C Programming Part I

2.1.2 POWER ON RESET (POR)

After being reset, a portion of library functions called POR routine initializes the system
hardware, memory buffers, and parameters such as follows.

There must be one and only one “main” function in the C program which is the entry
point of the application program. Control is then transferred to the “main” function
whenever the system initialization is done.

COM Ports

After reset, all COM ports will be disabled.

Reader Ports

After reset, all reader ports will be disabled.

Keypad Scanning

After reset, keypad scanning will be enabled.

LCD

After reset, LCD will be initialized and the displayed contents will be cleared out; the cursor is off
and set to the upper-left corner (0, 0).

 Contrast: Level 4

Backlight

After reset, the backlight settings for the keypad and LCD will be set to:

 Duration: 20 seconds

 Luminosity: Level 2 (= BKLIT_LO)

 Shade effect: Enabled (= BKLIT_SHADE_LO for 8200/8400 Series)

LED

After reset, all the indicators will be set off and reset to default. (= LED_SYSTEM_CTRL for
8200/8400/8700 Series)

Calendar

After reset, Real Time Clock (RTC) will be set to the current time.

Buzzer Volume (for 8200/8400 Series only)

After reset, the buzzer will be set off with its volume reset to default. (= HIGH_VOL)

USB Charging Current (for 8200/8400/8700 Series only)

After reset, the USB charging current will be set to 500 mA.

Others…

Allocate stack area and other parameters.

 27

 Chapter 2 Mobile-Specific Function Library

2.1.3 SYSTEM GLOBAL VARIABLES

A number of global variables are declared by the system.

Note: sys_msec and sys_sec are system timers that are cleared to 0 upon powering up.
Do not write to these system timers as they are updated by the timer interrupt.

extern volatile unsigned long sys_msec; // in units of 5 milliseconds

extern volatile unsigned long sys_sec; // in units of 1 second

extern unsigned int AUTO_OFF; // in units of 1 second

This variable governs the counter for the system to automatically shut down the user program
whenever there is no operation during the preset period.

When it is set to 0, the AUTO_OFF function will be disabled.

...

AUTO_OFF = 60; // set 1 minute

_KeepAlive__(); // load the AUTO_OFF value

...

Note: You must call _KeepAlive__() to reset the counter.

extern unsigned int POWER_ON;

This variable can be set to either POWERON_RESUME or POWERON_RESTART.

 By default, it is set to POWERON_RESUME. Upon powering on, the user program will start from
the last powering off session.

However, in some cases the user program will always restart itself upon powering on — (1) when
batteries being removed and loaded back; (2) when entering System Menu before normal
operation.

extern const int SYSTEM_BEEP [];

This variable holds the frequency-duration pair of the system beep, which is the sound you hear
when entering System Menu.

The following example can be used to sound the system beep.

on_beeper(SYSTEM_BEEP);

extern unsigned int BKLIT_TIMEOUT; // in units of 1 second

This variable holds the backlight timer for the LCD when its backlight is set on.

 By default, it is set to 20 seconds.

extern long AIMING_TIMEOUT; // in units of 5 milliseconds

This variable holds the aiming timer for Aiming mode.

 By default, it is set to 200 (= 1 second). Note that 0 is not allowed!

28

CipherLab C Programming Part I

extern int IrDA_Timeout; 8000, 8300, 8500

This variable governs the timer for the IrDA connection; the system will give up trying to establish
connection with an IrDA device when the timer expires.

Possible value of this variable can be one of the following time intervals.

Value Value

1 3 seconds (Default) 5 20 seconds

2 8 seconds 6 25 seconds

3 12 seconds 7 30 seconds

4 16 seconds 8 40 seconds

extern int BC_X, BC_Y;

These two variables govern the location of the battery icon. Once their values are changed, the
battery icon will be moved.

 8000 Series: Set to (96, 51) by default.

 8300 Series: Set to (120, 51) by default.

 8200/8400 Series: Set to (144, 152) by default.

 8500/8700 Series: Set to (144, 152) by default.

extern int KEY_CLICK [4];

This variable holds the frequency-duration pair of the key click.

The following example can be used to generate a beeping sound like the key click.

on_beeper(KEY_CLICK);

extern unsigned char WakeUp_Event_Mask;

It is possible to wake up the mobile computer by one of the following pre-defined events:

8000 Events Meaning

PwrKey_WakeUp The wakeup event occurs when the POWER key is pressed.

Alarm_WakeUp The wakeup event occurs when the alarm time is up.

8300 Events Meaning

Wedge_WakeUp The wakeup event occurs when the keyboard wedge cable is
connected.

RS232_WakeUp The wakeup event occurs when the RS-232 cable is connected.

Charging_WakeUp The wakeup event occurs when the mobile computer is being
charged.

ChargeDone_WakeUp The wakeup event occurs when the battery charging is done.

For example,

WakeUp_Event_Mask = RS232_WakeUp|Charging_WakeUp;

 // wake up by RS-232 connection or battery charging events

 29

 Chapter 2 Mobile-Specific Function Library

8400 Events Meaning

USB_WakeUp The wakeup event occurs when the USB cable is connected.

RS232RXD_WakeUp The wakeup event occurs when data is received via RS-232.

RS232_WakeUp The wakeup event occurs when the RS-232 cable is connected.

Charging_WakeUp The wakeup event occurs when the mobile computer is being
charged.

ChargeDone_WakeUp The wakeup event occurs when the battery charging is done.

PwrKey_WakeUp The wakeup event occurs when the POWER key is pressed.

Alarm_WakeUp The wakeup event occurs when the alarm time is up.

For example,

WakeUp_Event_Mask = USB_WakeUp|Charging_WakeUp;

 // wake up by USB connection or battery charging events

8500 Events Meaning

Charging_WakeUp The wakeup event occurs when the mobile computer is being
charged.

ChargeDone_WakeUp The wakeup event occurs when the battery charging is done.

For example,

WakeUp_Event_Mask = Charging_WakeUp; // wake up by the battery charging event

8200,
8700

Events Meaning

USB_WakeUp The wakeup event occurs when the USB cable is connected.

RS232_WakeUp The wakeup event occurs when the RS-232 cable is connected.

Charging_WakeUp The wakeup event occurs when the mobile computer is being
charged.

ChargeDone_WakeUp The wakeup event occurs when the battery charging is done.

PwrKey_WakeUp The wakeup event occurs when the POWER key is pressed.

Alarm_WakeUp The wakeup event occurs when the alarm time is up.

For example,

WakeUp_Event_Mask = USB_WakeUp|Charging_WakeUp;

 // wake up by USB connection or battery charging events

extern char ProgVersion[16];

This character array can be used to store the version information of the user program.

 Such version information can be checked from the submenu: System Menu | Information.

Note that your C program needs to declare this variable to overwrite the system default setting.

For example,

const char ProgVersion[16] = “Power AP 1.00”;

30

CipherLab C Programming Part I

2.1.4 SYSTEM INFORMATION

These routines can be used to collect information on the components, either hardware or
software, of the mobile computer.

DeviceType

Purpose To get information of modular components in hardware.

Syntax void* DeviceType (void);

Example printf(“DEV:%s - %01d”, DeviceType(), KeypadLayout());

Return Value It always returns a pointer to where the information is stored.

Remarks The information of device type is displayed as “xxxx”; each is a digit from 0 to
9.

Digits x x x x

Types Reader Module Wireless Module Others Reserved

8000 Device Type Meaning

0xxx No reader

1xxx CCD scan engine

2xxx Laser scan engine

x0xx No wireless module

x4xx 802.11b/g module

x5xx Bluetooth module

x6xx Acoustic coupler module

xx0x AAA Alkaline battery

xx1x Rechargeable Li-ion battery

8200 Device Type Meaning

0xxx No reader

1xxx CCD scan engine

2xxx Laser scan engine

3xxx 2D scan engine

x0xx No wireless module

x5xx Bluetooth module

x8xx 802.11b/g + Bluetooth

8300 Device Type Meaning

0xxx No reader

1xxx CCD scan engine (Not for H/W version 4.0)

 31

 Chapter 2 Mobile-Specific Function Library

 (8300) 2xxx Laser scan engine

CCD or Laser scan engine (for H/W version 4.0)

4xxx Long Range Laser scan engine

x0xx No wireless module

x1xx 433 MHz module

x2xx 2.4 GHz module

x4xx 802.11b/g module

x5xx Bluetooth module

x6xx Acoustic coupler module

x8xx 802.11b/g + Bluetooth

xx0x No RFID

xx1x RFID module

xxx0 None

xxx1 CCD scan engine (Only for H/W version 4.0)

For hardware version 4.0, when the first digit is “2”, it may refer to CCD or
Laser scan engine. You will need to check the fourth digit: “1” for CCD, “0”
for Laser.

8400 Device Type Meaning

0xxx No reader

1xxx CCD scan engine

2xxx Laser scan engine

3xxx 2D scan engine

x4xx 802.11b/g + Bluetooth

x5xx Bluetooth module only

8500 Device Type Meaning

0xxx No reader

1xxx CCD scan engine

2xxx Laser scan engine

3xxx 2D scan engine

4xxx Long Range Laser scan engine

5xxx Extra Long Range Laser scan engine

x4xx 802.11b/g + Bluetooth

x5xx Bluetooth module only

xx0x No RFID

xx1x RFID module

32

CipherLab C Programming Part I

 8700 Device Type Meaning

0xxx No reader

1xxx CCD scan engine

2xxx Laser scan engine

3xxx 2D scan engine

4xxx Long Range Laser scan engine

x3xx 3.5G + Bluetooth

x4xx 802.11b/g + Bluetooth

x5xx Bluetooth module only

x7xx 802.11b/g + 3.5G + Bluetooth

xx0x No RFID

xx1x RFID module

xx2x GPS module

See Also KeypadLayout

 33

 Chapter 2 Mobile-Specific Function Library

BootloaderVersion 8200, 8700

Purpose To get the version information of bootloader.

Syntax void* BootloaderVersion (void);

Example printf(“BL:%s”, BootloaderVersion());

Return Value It always returns a pointer to where the information is stored.

See Also LibraryVersion

FontVersion

Purpose To get the version information of font file.

Syntax void* FontVersion (void);

Example printf(“FONT:%s”, FontVersion);

Return Value It always returns a pointer to where the information is stored.

Remarks The font version is “System Font” by default. If any font file is loaded on the
mobile computer, its file name will be provided here as the version information.

See Also CheckFont

GetRFmode

Purpose To find out the current RF mode.

Syntax int GetRFmode (void);

Example GetRFmode();

Return Value The return value can be 0 ~ 8, depending on the capabilities of your mobile
computer.

Remarks Return Value

0x00 NO_RF_MODEL (8000, 8200, 8300)

0x01 MODE_433M Obsolete

0x02 MODE_24G Obsolete

0x03 Reserved

0x04 MODE_802DOT11 (8071, 8370, 8470, 8570, 8770)

0x05 MODE_BLUETOOTH (8062, 8260, 8362, 8400, 8500,
8700)

0x06 MODE_ACOUSTIC (8020, 8021)

0x07 MODE_802DOT11_GSM (8790)

0x08 MODE_802DOT11_BT (8230, 8330)

HardwareVersion

Purpose To get the version information on hardware.

Syntax void* HardwareVersion (void);

Example printf(“H/W:%s”, HardwareVersion());

Return Value It always returns a pointer to where the information is stored.

34

CipherLab C Programming Part I

KernelVersion

Purpose To get the version information of kernel.

Syntax void* KernelVersion (void);

Example printf(“KNL:%s”, KernelVersion());

Return Value It always returns a pointer to where the information is stored.

KeypadLayout

Purpose To get the layout information of keypad.

Syntax int KeypadLayout (void);

Example printf(“DEV:%s - %01d”, DeviceType(), KeypadLayout());

Return Value 8000 It returns 0 for 21-key.

8200 It returns 0 for 24-key.

8300 It returns 0 for 24-key; 1 for 39-key.

8400 It returns 0 for 29-key; 1 for 39-key.

8500 It returns 0 for 24-key; 1 for 44-key Type I; 2 for 44-key Type II
(= 44-TE key).

8700 It returns 0 for 24-key; 1 for 44-key Type II (= 44-TE key).

LibraryVersion

Purpose To get the version information of mobile-specific library.

Syntax void* LibraryVersion (void);

Example printf(“LIB:%s”, LibraryVersion());

Return Value It always returns a pointer to where the information is stored.

8000 Version of standard function library 8000lib.lib

8200 Version of standard function library 8200lib.lib

8300 Version of standard function library 8300lib.lib

8400 Version of standard function library 8400lib.lib

8500 Version of standard function library 8500lib.lib

8700 Version of standard function library 8700lib.lib

See Also BootloaderVersion, NetVersion

ManufactureDate

Purpose To get the manufacturing date.

Syntax void* ManufactureDate (void);

Example printf(“M/D:%s”, ManufactureDate());

Return Value It always returns a pointer to where the information is stored.

 35

 Chapter 2 Mobile-Specific Function Library

NetVersion

Purpose To get the version information of external library.

Syntax void* NetVersion (void);

Example printf(“NetLIB:%s”, NetVersion());

Return Value It always returns a pointer to where the information is stored.

Remarks This routine gets the version information of external library, if there is any.

Otherwise, it gets the version information of mobile-specific library.

 External Library Mobile-specific Library

8000 80PPP.lib 80BNEP.lib 80WLAN.lib 8000lib.lib

8200 --- --- --- 8200lib.lib

8300 83PPP.lib 83BNEP.lib 83WLAN.lib 8300lib.lib

8400 84PPP.lib --- 84WLAN.lib 8400lib.lib

8500 --- --- --- 8500lib.lib

8700 --- --- --- 8700lib.lib

See Also DeviceType, LibraryVersion, PPPVersion

OriginalSerialNumber

Purpose To get the original serial number of the mobile computer.

Syntax void* OriginalSerialNumber (void);

Example printf(“S/N:%s”, OriginalSerialNumber());

Return Value It always returns a pointer to where the information is stored.

Remarks Note that if the original serial number is “???”, it means the serial number has
never been modified.

See Also SerialNumber

PPPVersion 8000, 8300, 8400

Purpose To get the version information of external PPP library.

Syntax void* PPPVersion (void);

Example printf(“PPPLIB:%s”, PPPVersion());

Return Value It always returns a pointer to where the information is stored.

Remarks This routine gets the version information of external PPP library, if there is any.

Otherwise, it returns NONE.

 External Library Mobile-specific Library

8000 80PPP.lib 80BNEP.lib 80WLAN.lib 8000lib.lib

8300 83PPP.lib 83BNEP.lib 83WLAN.lib 8300lib.lib

8400 84PPP.lib --- 84WLAN.lib 8400lib.lib

See Also DeviceType, LibraryVersion, NetVersion

36

CipherLab C Programming Part I

RFIDVersion 8300, 8500, 8700

Purpose To get the version information of the RFID module.

Syntax void* RFIDVersion (void);

Example printf(“RFID:V%s”, RFIDVersion());

Return Value It always returns a pointer to where the information is stored.

See Also DeviceType

SerialNumber

Purpose To get the current serial number of the mobile computer.

Syntax void* SerialNumber (void);

Example printf(“S/N:%s”, SerialNumber());

Return Value It always returns a pointer to where the information is stored.

See Also OriginalSerialNumber

 37

 Chapter 2 Mobile-Specific Function Library

2.1.5 SECURITY

To provide System Menu with password protection so that unauthorized users cannot
gain access to it, you may either directly enable the password protection mechanism
from System Menu or through programming. In addition, a number of security-related
functions are available for using the same password to protect your own application.

CheckPasswordActive

Purpose To check whether the system password has been applied or not.

Syntax int CheckPasswordActive (void);

Example if (CheckPasswordActive())

printf(“Please input password:”);

Return Value If applied, it returns 1.

Otherwise, it returns 0 to indicate no password is required.

Remarks By default, System Menu is not password-protected.

CheckSysPassword

Purpose To check whether the input string matches the system password or not.

Syntax int CheckSysPassword (const char *psw);

Example if (!CheckSysPassword(szInput))

printf(“Password incorrect!!!”);

Return Value If the input string matches the system password, it returns 1.

Otherwise, it returns 0.

Remarks If the system password has been applied and you want to use the same
password to protect your application, then this routine can be used to check if
the input string matches the system password.

InputPassword

Purpose To provide simple edit control for the user to input the password.

Syntax int InputPassword (char *psw);

Example char szPsw[10];

printf(“Input password:”);

if (InputPassword(szPsw))

if (!CheckSysPassword(szPsw))

 printf(“Illegal password!”);

Return Value If the user input is confirmed by hitting [Enter], it returns 1.

If the user input is cancelled by hitting [ESC], it returns 0.

Remarks Instead of showing normal characters on the display, it shows an asterisk (*)
whenever the user inputs a character.

38

CipherLab C Programming Part I

SaveSysPassword

Purpose To save or change the system password.

Syntax int SaveSysPassword (const char *psw);

Example SaveSysPassword(“12345”);

Return Value If successful, it returns 1.

Otherwise, it returns 0 to indicate the length of password is over 8 characters.

Remarks The user is allowed to change the system password, but the length of password
is limited to 8 characters maximum.

 If the input string is NULL, the system password will be disabled.

 39

 Chapter 2 Mobile-Specific Function Library

2.1.6 PROGRAM MANAGER

Program Manager, being part of the kernel, is capable of managing multiple programs
(.shx).

Flash Memory (Program Manager)

It is possible to download multiple programs by calling LoadProgram().

 For 8000/8300/8500 Series, up to 6 programs are allowed.

 For 8200/8400/8700 Series, up to 7 programs are allowed.

But only one of them can be activated by calling ActivateProgram(), and then the program gets
to running upon powering on.

SRAM (File System)

By calling DownLoadProgram(), programs can be downloaded to the file system as well. The
number of programs that can be downloaded depends on the size of SRAM or memory card, but it
cannot exceed 253. After downloading, the setting of ProgVersion[], if it exists, will be used to be
the default file name. Otherwise, it will be named as “Unknown” automatically. This file name may
be changed by rename if necessary.

 A program in the file system can be loaded to Program Manager (flash memory) by calling
UpdateBank(). Its file name, as well as the program version, will be copied to Program
Manager accordingly. Then it can be activated by calling ActivateProgram().
Alternatively, a program in the file system can be directly activated by calling UpdateUser(). If
the file system is not cleared, it allows options for removing the program from the file system.

Program Manager Menu

 Download
This is furnished by calling LoadProgram().
The “Download Via” options may vary by different mobile computers. Below are sample
screenshots for 8500 Series. For 8300 Series, the options are Direct RS-232, Cradle-IR, and
IrDA. For 8200/8400/8700 Series, the options are RS-232, USB Virtual COM, Bluetooth, and SD
Card.

40

CipherLab C Programming Part I

 Activate

This is furnished by calling ActivateProgram().

 Upload

Program Manager menu also allows user to upload programs to another mobile computer or
host computer. Two options are provided after selecting “Upload” from the menu.
1. Upload > One Program
2. Upload > All Programs
However, if the file name (ProgVersion[]) of a program is prefixed with a “#” symbol, it
means the program is protected, and therefore, uploading is not allowed.

 41

 Chapter 2 Mobile-Specific Function Library

ActivateProgram

Purpose To make a resident program become the active program (you may clear or
keep the original file system).

Syntax void ActivateProgram (int Prog, int mode);

Parameters int Prog

1 ~ 6 (Max. 6 programs) Each stands for a resident program on
8000/8200/8300/8500/8700.

1 ~ 7 (Max. 7 programs) Each stands for a resident program on
8400.

int mode

0 KEEP_FILE_SYSTEM To keep the original file system.

1 CLEAR_FILE_SYSTEM To clear the original file system.

Example ActivateProgram(3, KEEP_FILE_SYSTEM);

 // make program #3 become active and keep the file system

Return Value None

Remarks This routine copies the desired program (Prog) in flash memory from its
residence location to the active area, and thus makes it become the active
program.

 The original program resided in the active area will then be replaced by the
new program.

 The POWER key is disabled to protect the system while replacing the
program.

 If successful, the new program will be activated immediately. However, if
the execution continues running to the next instruction, it means the
operation of this routine fails.

See Also DeleteBank, LoadProgram, ProgramInfo, ProgramManager

DeleteBank 8000, 8200, 8300, 8400, 8700

Purpose To delete a user program (.shx) from Program Manager (flash memory).

Syntax int DeleteBank (int slot);

Parameters int slot

1 ~ 6 (Max. 6 slots) Each stands for a resident location on
8000/8200/8300/8700.

1 ~ 7 (Max. 7 programs) Each stands for a resident program on
8400.

Example if (DeleteBank(1))

printf(“Delete OK”);

else

printf(“Delete NG”);

Return Value If successful, it returns 1.

Otherwise, it returns 0.

See Also ActivateProgram, LoadProgram, UpdateBank

42

CipherLab C Programming Part I

DownLoadProgram

Purpose To download a user program (.shx) to the file system (SRAM).

Syntax int DownLoadProgram (char *filename, int comport, int baudrate);

Parameters char *filename

Pointer to a buffer where filename of the program is returned.

 This function returns the filename of the result file in SRAM. Need to
reserve a buffer with size of 9 bytes.

 If the file name is identical to an existing program, the execution will fail.

int comport

1 or 2 or 5 COM1 or COM2 or COM5 for transmission

(COM5 is only supported on 8200/8400/8700)

int baudrate

BAUD_115200

BAUD_76800

BAUD_57600

BAUD_38400

BAUD_19200

BAUD_9600

BAUD_4800

BAUD_2400

Baud rate setting must be appropriate.

Example val = DownLoadProgram(filename_buffer, 1, BAUD_115200);

// download user program via COM1 at 115200 bps and return file name
to filename_buffer

Return Value If successful, it returns 1.

On error, it returns 0.

Otherwise, it returns -1 to indicate the action is aborted.

Remarks For 8300 Series, it is necessary to set the communication type of the specified
port before calling this routine, for example, SetCommType(1, 0) for Direct
RS-232 or SetCommType(1, 2) for Cradle-IR.

 Download via IrDA is allowed for LoadProgram() only, not for this routine.

See Also UpdateBank, UpdateUser

 43

 Chapter 2 Mobile-Specific Function Library

LoadProgram

Purpose To download a user program (.shx) to flash memory.

Syntax void LoadProgram (int Prog);

Parameters int Prog

1 ~ 6 (Max. 6 programs) Each stands for a resident program on
8000/8200/8300/8500/8700.

1 ~ 7 (Max. 7 programs) Each stands for a resident program on
8400.

Example LoadProgram(3); // load the user program to location #3

Return Value None

Remarks Upon calling this routine, the system exits the user application and enters
Program Manager | Download page immediately.

Simply choose “Download Via” and then “Baud Rate” in order to download the
user program to the specified location.

See Also ActivateProgram, DeleteBank, ProgramInfo, ProgramManager

ProgramInfo

Purpose To list program information.

Syntax int ProgramInfo (int slot, char *programtype, char *programname);

Parameters int slot

1 ~ 6 (Max. 6 slots) Each stands for a resident location on
8000/8200/8300/8500/8700.

1 ~ 7 (Max. 7 slots) Each stands for a resident location on
8400.

char *programtype

Pointer to a buffer where program type is stored.

char *programname

Need to reserve a buffer with size of 13 bytes.

Example val = ProgramInfo(2, typebuffer, namebuffer);

Return Value If successful, it returns the bank size of program.

Otherwise, it returns 0 to indicate the program does not exist.

Remarks This routine retrieves program information including its size and name.

 The program size, in kilo-bytes, depends on how many memory banks one
program occupies.

 The program name is the same one as shown in the menu of Program
Manager.

 The file type will be returned with a small letter: “c” for a C program, “b”
for a BASIC program, and “f” for a font file.

 Since one bank is 64 KB, the return value will be 64, 128, ..., etc.

See Also ActivateProgram, LoadProgram, ProgramManager

44

CipherLab C Programming Part I

ProgramManager

Purpose To enter the kernel and bring up the menu of Program Manager.

Syntax void ProgramManager (void);

Example ProgramManager(); // jump to the menu of Program Manager

Return Value None

Remarks Upon calling this routine, the user program stops running and jumps to the
kernel, and then Program Manager will take over the control.

See Also ActivateProgram, LoadProgram, ProgramInfo

UpdateBank

Purpose To copy a user program (.shx or .bin) from the file system (SRAM or SD card)
to Program Manager (flash memory).

Syntax int UpdateBank (const char *filename);

Parameters const char *filename

Pointer to a buffer where filename of the program is stored.

Example val = UpdateBank(“PlayTest”); // update bank via a file in SRAM

val = UpdateBank(“A:\\PlayTest”); // update bank via a file on SD card

Return Value If successful, it returns the residence location of program (slot 1 ~ 6 of
8000/8200/8300/8500/8700; slot 1 ~ 7 of 8400).

On error, it returns a negative value to indicate a specific error condition.

Return Value

-1 Failed to open file

-2 Invalid file format

-3 No free residence location in Program Manager

-4 No enough free flash

-5 Failed to read program code from source file

-6 Failed to erase/write flash

Remarks  If the file is stored in SRAM, the file name can be 8 bytes at most, which
does not include the null character.

 If the file name specified is identical to that of an existing program in flash
memory, the new program will replace the old one. Otherwise, it will be
stored in an automatically assigned residence location.

 SD card is allowed only with 8200/8400/8700 Series. If the file name has a
prefix of “drive A”, such as “A:\\”, this routine will search for the file on SD
card. Refer to 2.16.2 Directory for how to specify a file path. In this case, if
the program version of the file (“ProgVersion”) is identical to that of an
existing program in flash memory, the new program will replace the old
one. Note that the file name of the specified file on SD card will be ignored!

See Also DeleteBank, DownLoadProgram, UpdateUser

 45

 Chapter 2 Mobile-Specific Function Library

UpdateBootloader 8200, 8700

Purpose To update the bootloader program (.shx or .bin) by copying the update from
the file system (SRAM or SD card) to the bootloader (flash memory).

Syntax int UpdateBootloader (const char *filename, int mode, int remove);

Parameters const char *filename

Pointer to a buffer where filename of the program is stored.

int mode

0 KEEP_FILE_SYSTEM To keep the SRAM file system.

1 CLEAR_FILE_SYSTEM To clear the SRAM file system.

int remove

0 To keep the program in the file system.

1 To remove the program from the file
system.

Example val = UpdateBootloader(“8200B100”, KEEP_FILE_SYSTEM, 0);

// update bootloader via a file in SRAM

val = UpdateBootloader(“A:\\8200B100”, KEEP_FILE_SYSTEM, 0);

// update bootloader via a file on SD card

Return Value If successful, the device will restart itself.

On error, it returns 0~2 to indicate the error condition encountered.

Return Value

0 No file

1 Invalid file format or read fail

2 The update version is no greater than the current version.

Remarks  Downgrade is not allowed!

 If the file is stored in SRAM, the file name can be 8 bytes at most, which
does not include the null character.

 If the file name has a prefix of “A:\\”, this routine will search for the file on
SD card.

See Also DownLoadProgram, UpdateKernel, UpdateUser

46

CipherLab C Programming Part I

UpdateKernel

Purpose To update the kernel program (.shx or .bin) by copying the update from the file
system (SRAM or SD card) to the kernel (flash memory).

Syntax int UpdateKernel (const char *filename, int mode, int remove);

Parameters const char *filename

Pointer to a buffer where filename of the program is stored.

int mode

0 KEEP_FILE_SYSTEM To keep the SRAM file system.

1 CLEAR_FILE_SYSTEM To clear the SRAM file system.

int remove

0 To keep the program in the file system.

1 To remove the program from the file
system.

Example val = UpdateKernel(“8400K100”, KEEP_FILE_SYSTEM, 0);

// update kernel via a file in SRAM

val = UpdateKernel(“A:\\8400K100”, KEEP_FILE_SYSTEM, 0);

// update kernel via a file on SD card

Return Value If successful, the device will restart itself.

On error, it returns 0~5 to indicate the error condition encountered.

Return Value

0 No file

1 Invalid file format

2 No enough free flash

3 Write flash error

4 Read file error

5 The update version is no greater than the current version.

Remarks  Except for 8200/8700, downgrade is not allowed!

 Except for 8200/8700, it requiress 128 KB free flash before successful
execution. You may need to delete some programs from the flash memory.

 For 8200/8700, if the file is stored on SD card, it requires 1.5 MB free
SRAM file system size before successful execution. You may need to delete
some files.

 If the file is stored in SRAM, the file name can be 8 bytes at most, which
does not include the null character.

 SD card is allowed only with 8200/8400/8700 Series. If the file name has a
prefix of “A:\\”, this routine will search for the file on SD card.

See Also DownLoadProgram, UpdateBootloader, UpdateUser

 47

 Chapter 2 Mobile-Specific Function Library

UpdateUser

Purpose To make a user program (.shx or .bin), from the file system (SRAM or SD
card), become the active program.

Syntax int UpdateUser (const char *filename, int mode,…) ;

Parameters const char *filename

Pointer to a buffer where filename of the program is stored.

int mode

0 KEEP_FILE_SYSTEM To keep the original file system.

1 CLEAR_FILE_SYSTEM To clear the original file system.

int remove

0 To keep the program in the file system.

1 To remove the program from the file
system.

Example val = UpdateUser(“PlayTest”, KEEP_FILE_SYSTEM, 0);

// activate the program in SRAM, and keep the file system as well as
this program

val = UpdateUser(“A:\\PlayTest”, KEEP_FILE_SYSTEM, 0);

// activate the program on SD card, and keep the file system as well
as this program

Return Value If successful, the device will restart itself.

On error, it returns 0~3 to indicate the error condition encountered.

Return Value

0 No file

1 Invalid file format

2 No enough free flash

3 File name length is out of limit

Remarks You may call UpdateUser (const char *filename, int mode) or UpdateUser
(const char *filename, int mode, int remove).

This routine copies the desired program from the file system directly to the
active area of Program Manager in flash memory, and thus makes it become
the active program. The original file system may be kept or cleared (mode). If
the file system is kept, the program may be removed from it (remove).

 If the file is stored in SRAM, the file name can be 8 bytes at most, which
does not include the null character.

 If the file is stored on SD card, the file name can be 64 bytes at most,
which includes the null character.

 The original program resided in the active area will then be replaced by the
new program.

 SD card is allowed only with 8200/8400/8700 Series. If the file name has a
prefix of “A:\\”, this routine will search for the file on SD card.

48

CipherLab C Programming Part I

  While replacing the program, the POWER key is disabled to protect the
system.

 If successful, the new program will be activated immediately. However, if
the execution continues running to the next instruction, it means the
operation of this routine fails.

See Also DownLoadProgram, UpdateBank

 49

 Chapter 2 Mobile-Specific Function Library

2.1.7 DOWNLOAD MODE

DownLoadPage

Purpose To stop the application and force the program to jump to System Menu for
downloading new programs.

Syntax void DownLoadPage (void);

void DownLoadPage (int detect, int comtype, int baudrate);

Example open_com(1, 0x80); // 38400, N, 8

DownLoadPage(); // enter “Download” mode

Return Value None

Remarks This routine sets the mobile computer to the “Download” mode. The “Download
Via” page will be displayed, and the user can select the COM port and baud
rate for program downloading.

It is possible to pass arguments to suppress the download submenu.

 Parameter #1 (detect): The constant NO_MENU is a must.

 Parameter #2 (comtype): Communication type; refer to SetCommType.

 Parameter #3 (baudrate): Transmission baud rate; refer to open_com.

For example,

DownLoadPage(NO_MENU, COMM_DIRECT, BAUD_115200);

In this case, the mobile computer will be set to the “Ready to download” state
without prompting the download submenu.

50

CipherLab C Programming Part I

2.1.8 MENU DESIGN

SMENU and MENU structures are defined in the header files. User can simply fill the
MENU structure and call prc_menu to build a hierarchy menu-driven user interface.

MENU STRUCTURE

struct SMENU {

int total_entry;

int selected_entry;

int ReturnFlag;

char* title;

 struct SMENU_ENTRY* entry_list[14];

};

typedef struct SMENU MENU;

Parameter Description

int total_entry The total number of the menu entries.

 1~14

int selected_entry The item number of the selected entry.

 1~ total_entry

int ReturnFlag The return flag can be 0 or 1.

(1) When the return flag is 0, it will return to the current
menu after executing the function calls it contains or
pressing [ESC] to exit its sub-menus.

(2) When the return flag is 1, it will skip the current menu
after executing the function calls it contains or pressing
[ESC] to exit its sub-menus.

char* title The title of this menu.

struct SMENU_ENTRY* entry_list[14] See MENU_ENTRY Structure

MENU_ENTRY STRUCTURE

struct SMENU_ENTRY {

int text_x;

int text_y;

char* text;

void (*func) (void);

 struct SMENU *sub_menu;

};

typedef struct SMENU_ENTRY MENU_ENTRY;

 51

 Chapter 2 Mobile-Specific Function Library

Parameter Description

int text_x X coordinate of this menu entry.

int text_y Y coordinate of this menu entry.

char* text The title of this menu entry.

Void (*func) (void) The function to be executed when this menu entry is
selected.

struct SMENU *sub_menu The sub-menu to be executed when this menu entry is
selected.

prc_menu

Purpose To create a menu-driven interface.

Syntax int prc_menu (MENU *menu) ;

Parameters MENU *menu

SMENU and MENU structures are defined in the header files. User can simply
fill the MENU structure and call prc_menu to build a hierarchy menu-driven
user interface.

Example

// Declare the MENU_ENTRY before the Menu reference

MENU_ENTRY Collect;

MENU_ENTRY Upload;

MENU_ENTRY Download;

MENU MyMenu={3, 1, 0, “My Menu”, {&Collect, &Upload, &Download}};

// Declare function before the MENU_ENTRY reference

void FuncCollect(void);

void FuncUpload(void);

void FuncDownload(void);

MENU_ENTRY Collect = {0, 1, “1. Collect”, FuncCollect, 0};

MENU_ENTRY Upload = {0, 2, “2. Upload”, FuncUpload, 0};

MENU_ENTRY Download = {0, 3, “3. Download”, FuncDownload, 0};

void FuncCollect(void)

{

// to do: add your own program code here

}

void FuncUpload(void)

{

// to do: add your own program code here

52

CipherLab C Programming Part I

 }

void FuncDownload(void))

{

// to do: add your own program code here

}

void main(void)

{

// state_menu

clr_scr();

gotoxy(0, 0);

// Menu list

while (1)

{

 prc_menu(&MyMenu); //* process MyMenu menu */

 …

}

}

Return Value If the return flag in the MENU structure is 1, it returns 1.

Otherwise, it returns 0 to indicate the ESC key was pressed to abort operation.

Remarks This routine creates a user-defined menu. In addition to using [Up]/[Down]
and [Enter] keys to select an item, shortcut keys are provided. The first
character of each item title is treated as a shortcut key. In the above example,
1, 2, and 3 are shortcut keys for these three items (submenus) respectively.
That is, you can press [1] on the keypad to directly enter the submenu
“Collect”.

If the length of a string for a menu item exceeds the maximum characters
allowed in one line per screen, it will be divided into segments automatically.
Then, with the specified interval, these segments are displayed one by one.

 For 8500/8700 Series, its touch screen functionality has each item in a
menu taken as a touchable item. That is, each item can be selected by
directly touching it. If the menu contains more than one page, there will be
a “page-up” icon in the bottom row of every page except the first one. To
go to a previous page or menu, you can touch the current menu title.

See Also GetMenuPauseTime, SetMenuPauseTime

 53

 Chapter 2 Mobile-Specific Function Library

MENU PAUSE TIME

GetMenuPauseTime

Purpose To get the interval value for displays of fragments of a string when using
prc_menu.

Syntax unsigned long GetMenuPauseTime (void);

Example interval = GetMenuPauseTime();

Return Value If successful, it returns the interval value in units of 5 milli-seconds.

See Also prc_menu

SetMenuPauseTime

Purpose To set interval between displays of fragments of a string when using prc_menu.

Syntax void SetMenuPauseTime (unsigned long time);

Parameters unsigned long time

Specify interval in units of 5 milli-seconds.

Example SetMenuPauseTime(200); // set display interval to 1 second

Return Value None

Remarks Varying by the screen size and the font size of alphanumeric characters, if the
length of a string for a menu item exceeds the maximum characters allowed in
one line per screen, it will be divided into segments automatically. Then, with
the specified interval, these segments are displayed one by one.

The pause time is set to 2 seconds by default.

See Also prc_menu

54

CipherLab C Programming Part I

2.2 BARCODE READER

The barcode reader module provides options for a number of scan engines as listed
below.

Scan Engine: “” means supported 8000 8200 8300 8400 8500 8700

1D

CCD (linear imager)      

Standard Laser      

Long Range Laser (LR) --- ---  ---  

Extra Long Range Laser (ELR) --- --- --- ---  ---

2D 2D imager ---  ---   

2.2.1 BARCODE DECODING

Below are global variables related to the barcode decoding routines. These variables are
declared by the system, and therefore unnecessary to be declared in user programs.

extern unsigned char ScannerDesTbl[23];

ScannerDesTbl[48];

ScannerDesTbl[83];

ScannerDesTbl2[16];

 // 23 bytes for 8000

// 48 bytes for 8200, 8300, 8400, 8700

// 83 bytes for 8500

 //16 bytes for the 8200, 8400 extended
 // scanner description table

The operation of the Decode() routine is governed by this unsigned character array.

 Refer to Appendix I and II for details of the ScannerDesTbl[] and ScannerDesTbl2[]
variables.

 For 8200/8400/8500/8700 Series, only the first 45 bytes are used currently, and the rest is
reserved!

Note: For 2D or (Extra) Long Range Laser scan engine (except 8700 long range), it is
necessary to enable new settings by calling ConfigureReader().

extern char CodeBuf[];

After successful decoding, the decoded data is stored in this buffer.

extern char CodeType;

After successful decoding, the code type (for a symbology being decoded) is stored in this variable.

 55

 Chapter 2 Mobile-Specific Function Library

extern int CodeLen;

After successful decoding, the length of the decoded data is stored in this variable.

To enable barcode decoding capability in the system, the first thing is that the scanner
port must be initialized by calling the InitScanner1() function. After the scanner port is
initialized, the Decode() function can be called in the program loops to perform barcode
decoding.

 For CCD, Laser scan engine or 8700 long range, the barcode decoding routines
consist of 3 functions: InitScanner1(), Decode(), and HaltScanner1().

 For 2D or (Extra) Long Range Laser scan engine (except 8700 long range), it is
necessary to enable new settings by calling ConfigureReader() before
InitScanner1().

extern unsigned char FsEAN128[2]; 8000, 8200, 8300, 8400, 8700

This global array inserted between adjacent Application ID (AID) fields as the field separator is
used for GS1 formatting.

extern unsigned char AIMark[2]; 8000, 8200, 8300, 8400, 8700

This global array is used for indicating Application ID Mark (AID Mark). AIMark[0] will be placed at
the left of AID, and AIMark[1] at the right of AID.

ConfigureReader 8200, 8300, 8400, 8500, 8700

Purpose To enable new settings on the scan engine according to the ScannerDesTbl
array.

Syntax int ConfigureReader (void);

Example memcpy(ScannerDesTbl, DefaultSetting, sizeof(DefaultSetting));

if (ConfigureReader())

printf(“Set OK”);

else

printf(“Set NG”);

Return Value If successful, it returns 1.

Otherwise, it returns 0.

Remarks For new settings of ScannerDesTbl to take effect on (Extra) Long Range Laser
or 2D scan engine, it is necessary to call this function.

Note that this function shall be called before InitScanner1() or after
HaltScanner1.

See Also ScannerDesTbl

56

CipherLab C Programming Part I

Decode

Purpose To perform barcode decoding.

Syntax int Decode (void);

Example while(1) {

if (Decode())

break;

}

Return Value If successful, it returns an integer whose value equals to the string length of
the decoded data.

Otherwise, it returns 0.

Remarks Once the scanner port is initialized by calling InitScanner1(), call this routine to
perform barcode decoding.

 This routine should be called constantly in user program loops when
barcode decoding is required.

 If barcode decoding is not required for a long period of time, it is
recommended that the scanner port should be stopped by calling
HaltScanner1().

 If the Decode function decodes successfully, the decoded data will be
placed in the string variable CodeBuf[] with a string terminating character
appended. And integer variable CodeLen, as well as the character variable
CodeType will reflect the length and code type of the decoded data
respectively.

See Also HaltScanner1, InitScanner1

HaltScanner1

Purpose To stop the scanner port from operating.

Syntax void HaltScanner1 (void);

Example HaltScanner1();

Return Value Once the scanner port is stopped from operating by this routine, it cannot be
restarted unless it is initialized again by calling InitScanner1().

 It is recommended that the scanner port should be stopped if barcode
decoding is not required for a long period of time.

Remarks None

See Also Decode, InitScanner1

 57

 Chapter 2 Mobile-Specific Function Library

InitScanner1

Purpose To initialize the scanner port.

Syntax void InitScanner1 (void);

Example InitScanner1();

while(1) {

if (Decode())

break;

}

Return Value The scanner port will not work unless it is initialized.

Remarks None

See Also Decode, HaltScanner1

58

CipherLab C Programming Part I

2.2.2 CODE TYPE

The following tables list the values of the variable CodeType.

Note: For CCD or Laser scan engine, the variable OrgCodeType is provided for
identifying the original code type when a conversion has occurred.

CodeType Table I:

DEC ASCII Symbology Supported by Scan Engine

63 ? Coop 25 8000, 8200, 8300, 8400, 8700

-CCD, Laser, 8700-Long Range

64 @ ISBT 128 CCD, Laser, 8700-Long Range

65 A Code 39 CCD, Laser, 8700-Long Range

66 B Italian Pharmacode CCD, Laser, 8700-Long Range

67 C CIP 39 (French Pharmacode) CCD, Laser, 8700-Long Range

68 D Industrial 25 CCD, Laser, 8700-Long Range

69 E Interleaved 25 CCD, Laser, 8700-Long Range

70 F Matrix 25 CCD, Laser, 8700-Long Range

71 G Codabar (NW7) CCD, Laser, 8700-Long Range

72 H Code 93 CCD, Laser, 8700-Long Range

73 I Code 128 CCD, Laser, 8700-Long Range

74 J UPC-E0 / UPC-E1 CCD, Laser, 8700-Long Range

75 K UPC-E with Addon 2 CCD, Laser, 8700-Long Range

76 L UPC-E with Addon 5 CCD, Laser, 8700-Long Range

77 M EAN-8 CCD, Laser, 8700-Long Range

78 N EAN-8 with Addon 2 CCD, Laser, 8700-Long Range

79 O EAN-8 with Addon 5 CCD, Laser, 8700-Long Range

80 P EAN-13 / UPC-A CCD, Laser, 8700-Long Range

81 Q EAN-13 with Addon 2 CCD, Laser, 8700-Long Range

82 R EAN-13 with Addon 5 CCD, Laser, 8700-Long Range

83 S MSI CCD, Laser, 8700-Long Range

84 T Plessey CCD, Laser, 8700-Long Range

85 U GS1-128 (EAN-128) CCD, Laser, 8700-Long Range

86 V Reserved ---

87 W Reserved ---

88 X Reserved ---

89 Y Reserved ---

 59

 Chapter 2 Mobile-Specific Function Library

90 Z Telepen CCD, Laser, 8700-Long Range

91 [GS1 DataBar (RSS) CCD, Laser, 8700-Long Range

92 \ Reserved ---

93] Reserved ---

A variable, OrgCodeType, is provided for identifying the original code type when a
conversion has occurred.

For example, if “Convert EAN-8 to EAN-13” is enabled, an EAN-8 barcode is decoded to
EAN-13 barcode. Its code type is EAN-13 now and the original code type is EAN-8.

OrgCodeType Table:

DEC ASCII Symbology Supported by Scan Engine

65 A UPC-E CCD, Laser, 8700-Long Range

66 B UPC-E with Addon 2 CCD, Laser, 8700-Long Range

67 C UPC-E with Addon 5 CCD, Laser, 8700-Long Range

68 D EAN-8 CCD, Laser, 8700-Long Range

69 E EAN-8 with Addon 2 CCD, Laser, 8700-Long Range

70 F EAN-8 with Addon 5 CCD, Laser, 8700-Long Range

71 G EAN-13 CCD, Laser, 8700-Long Range

72 H EAN-13 with Addon 2 CCD, Laser, 8700-Long Range

73 I EAN-13 with Addon 5 CCD, Laser, 8700-Long Range

74 J UPC-A CCD, Laser, 8700-Long Range

75 K UPC-A with Addon 2 CCD, Laser, 8700-Long Range

76 L UPC-A with Addon 5 CCD, Laser, 8700-Long Range

0 NUL None CCD, Laser, 8700-Long Range

60

CipherLab C Programming Part I

CodeType Table II:

DEC ASCII Symbology Supported by Scan Engine

47 / Composite_CC_A 8200, 8400, 8700 2D

55 7 Composite_CC_B 8200, 8400, 8700 2D

64 @ ISBT 128 2D, (Extra) Long Range Laser

65 A Code 39 2D, (Extra) Long Range Laser

66 B Code 32 (Italian Pharmacode) 2D, (Extra) Long Range Laser

67 C N/A ---

68 D N/A ---

69 E Interleaved 25 2D, (Extra) Long Range Laser

70 F Matrix 25 8200, 8400, 8700 -2D

71 G Codabar (NW7) 2D, (Extra) Long Range Laser

72 H Code 93 2D, (Extra) Long Range Laser

73 I Code 128 2D, (Extra) Long Range Laser

74 J UPC-E0 2D, (Extra) Long Range Laser

75 K UPC-E with Addon 2 2D, (Extra) Long Range Laser

76 L UPC-E with Addon 5 2D, (Extra) Long Range Laser

77 M EAN-8 2D, (Extra) Long Range Laser

78 N EAN-8 with Addon 2 2D, (Extra) Long Range Laser

79 O EAN-8 with Addon 5 2D, (Extra) Long Range Laser

80 P EAN-13 2D, (Extra) Long Range Laser

81 Q EAN-13 with Addon 2 2D, (Extra) Long Range Laser

82 R EAN-13 with Addon 5 2D, (Extra) Long Range Laser

83 S MSI 2D, (Extra) Long Range Laser

84 T N/A ---

85 U GS1-128 (EAN-128) 2D, (Extra) Long Range Laser

86 V Reserved ---

87 W Reserved ---

88 X Reserved ---

89 Y Reserved ---

90 Z Reserved ---

91 [GS1 DataBar Omnidirectional (RSS-14) 2D, (Extra) Long Range Laser

92 \ GS1 DataBar Limited (RSS Limited) 2D, (Extra) Long Range Laser

93] GS1 DataBar Expanded (RSS Expanded) 2D, (Extra) Long Range Laser

94 ^ UPC-A 2D, (Extra) Long Range Laser

95 _ UPC-A Addon 2 2D, (Extra) Long Range Laser

 61

 Chapter 2 Mobile-Specific Function Library

96 ‘ UPC-A Addon 5 2D, (Extra) Long Range Laser

97 a UPC-E1 2D, (Extra) Long Range Laser

98 b UPC-E1 Addon 2 2D, (Extra) Long Range Laser

99 c UPC-E1 Addon 5 2D, (Extra) Long Range Laser

100 d TLC-39 (TCIF Linked Code 39) 2D

101 e Trioptic (Code 39) 2D, (Extra) Long Range Laser

102 f Bookland (EAN) 2D, (Extra) Long Range Laser

103 g Code 11 2D, 8300 -Long Range

104 h Code 39 Full ASCII 2D, (Extra) Long Range Laser

105 i IATANote (25) 2D, (Extra) Long Range Laser

106 j Industrial 25 (Discrete 25) 2D, (Extra) Long Range Laser

107 k PDF417 2D

108 l MicroPDF417 2D

109 m Data Matrix 2D

110 n Maxicode 2D

111 o QR Code 2D

112 p US Postnet 2D

113 q US Planet 2D

114 r UK Postal 2D

115 s Japan Postal 2D

116 t Australian Postal 2D

117 u Dutch Postal 2D

118 v Composite Code

Composite_CC_C

2D

8200, 8400, 8700 2D only

119 w Macro PDF417 2D

120 x Macro MicroPDF417 2D

121 y Chinese 25 8200, 8400, 8700 -2D

122 z Aztec 8200, 8400, 8700 -2D

123 { MicroQR 8200, 8400, 8700 -2D

124 | USPS 4CB / One Code / Intelligent Mail 8200, 8400, 8700 -2D

125 } UPU FICS Postal 8200, 8400, 8700 -2D

126 ~ Coupon Code 2D, (Extra) Long Range Laser

Note: IATA stands for International Air Transport Association, and this barcode type is
used on flight tickets.

62

CipherLab C Programming Part I

2.2.3 SCANNER DESCRIPTION TABLES

The unsigned character arrays, ScannerDesTbl and ScannerDesTbl2 (Scanner
Description Tables), govern the behavior of the Decode() function. Refer to Appendix I
that describes details of ScannerDesTbl and ScannerDesTbl2 variables:

For specific symbology parameters, refer to Appendix II. For scanner parameters, refer
to Appendix III.

 63

 Chapter 2 Mobile-Specific Function Library

2.3 RFID READER

For 8300/8500/8700 Series, it allows an optional RFID reader that can coexist with the
barcode reader, if there is any.

 External Libraries Required for RFID

Series Hardware Configuration External Libraries Required

8300 8300 – Batch + RFID 83RFID.lib

8370 – 802.11b/g + RFID 83WLAN.lib + 83RFID.lib

The RFID reader supports read/write operations, which depend on the tags you are using.
Supported labels include ISO 15693, Icode®, ISO 14443A, and ISO 14443B. The
performance of many tags has been confirmed, and the results are listed below.

Warning: Before programming, you should study the specifications of RFID tags.

Tag Type UID only Read Page Write Page

TAG_MifareISO14443A

Mifare Standard 1K   

Mifare Standard 4K   

Mifare Ultralight   

Mifare DESFire  --- ---

Mifare S50   

SLE44R35  --- ---

SLE66R35   

TAG_SR176

SRIX 4K   

SR176   

TAG_ISO15693

ICODE SLI   

SRF55V02P  --- ---

SRF55V02S  --- ---

SRF55V10P  --- ---

TI Tag-it HF-I   

TAG_Icode

ICODE   

Note: These are the results found with RFID module version 1.0 ( for features
supported), and you may use RFIDVersion() to find out version information.

64

CipherLab C Programming Part I

2.3.1 VIRTUAL COM

The algorithm for programming the RFID reader simply follows the routines related to
COM ports. The virtual COM port for RFID is defined as COM4. Thus,

 open_com (4, int) : initialize and enable the RFID COM port

 (parameter int can be any integer value)

 close_com (4) : terminate and disable the RFID COM port
 read_com (4, char*) : read data of card from RFID COM port
 write_com (4, char*) : write data of card through RFID COM port

The return values for some related functions are described below.

Function Return Value

read_com (4, char*) -1 No Tag

-2 Get Tag fail

-3 Get Tag Page fail

-5 Authentication fail

0 ~ xx Data Length

com_eot (4) -1 No Tag

-2 Get Tag fail

-3 Get Tag Page fail

-4 Write Tag Page fail

-5 Authentication fail

0 Other errors

1 Success

 65

 Chapter 2 Mobile-Specific Function Library

2.3.2 RFIDPARAMETER STRUCTURE

Before reading and writing a specific tag, the parameters of RFID must be specified by
calling RFIDReadFormat() and RFIDWriteFormat().

Parameter Description

unsigned char
TagType[4]

 TagType[0]

Bit 7 ~ 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved ISO
14443B

SR176 ISO
14443A

Icode Tagit ISO
15693

 TagType[1~3]: Reserved

unsigned int
StartByte

The starting byte of data for the read/write operation.

Unsigned int
MaxLen

 Read: The maximum data length (1~255).

 0 refers to reading UID data only.

 Write: Reserved (Any integer value is acceptable.)

unsigned char
Reserve[20]

Reserved

2.3.3 RFID DATA FORMAT

The data format for read_com() is as follows.

Byte 0 Byte 1 ~ 17 Byte 18 ~ xx

Tag Type ‘V’

‘T’

‘I’

‘M’

‘S’

‘Z’

TAG_ISO15693

TAG_Tagit

TAG_Icode

TAG_MifareISO14443A

TAG_SR176

TAG_ISO14443B

 Tag UID (SN)

 Data

66

CipherLab C Programming Part I

RFIDReadFormat 8300, 8500, 8700

Purpose To set the reading parameters of RFID.

Syntax void RFIDReadFormat (RFIDParameter *source);

Parameters RFIDParameter *source

Specify the parameters for the reading operation.

Example parameter.TagType[0] = 0x3f; // all supported tag types are enabled

parameter.StartByte = 0;

parameter.MaxLen = 150;

RFIDReadFormat(¶meter);

Return Value None

Remarks The parameters must be specified before the reading operation.

RFIDWriteFormat 8300, 8500, 8700

Purpose To set the writing parameters of RFID.

Syntax void RFIDWriteFormat (RFIDParameter *source);

Parameters RFIDParameter *source

Specify the parameters for the writing operation.

Example parameter.TagType[0] = 0x01; // tag type ISO 15693 is enabled

parameter.StartByte = 0;

parameter.MaxLen = 0; // any integer value

RFIDWriteFormat(¶meter);

Return Value None

Remarks The parameters must be specified before the writing operation.

 67

 Chapter 2 Mobile-Specific Function Library

2.3.4 RFID AUTHENTICATION

GetRFIDSecurityKey 8300, 8500, 8700

Purpose To check the status of security key for some specific tags.

Syntax int GetRFIDSecurityKey (unsigned char TagType, unsigned char
*KeyString, unsigned char *KeyType);

Parameters unsigned char TagType

‘V’

‘T’

‘I’

‘M’

‘S’

‘Z’

TAG_ISO15693

TAG_Tagit

TAG_Icode

TAG_MifareISO14443A

TAG_SR176

TAG_ISO14443B

Refer to the table in section 2.3 for more
information on tag types.

unsigned char *KeyString

Pointer to a buffer where key value (string) is stored.

unsigned char *KeyType

Pointer to a buffer where key type is stored.

Example if (!GetRFIDSecurityKey(TAG_MifareISO14443A, key_buffer, &keytype))

{

printf(“No Sefurity Key.”);

}

Return Value If any key exists, it returns 1.

Otherwise, it returns 0.

Remarks This routine is used to find out if there is a security key for some specific tag,
such as Mifare Standard 1K/4K or SLE66R35 tag.

68

CipherLab C Programming Part I

SetRFIDSecurityKey 8300, 8500, 8700

Purpose To set the security key of some specific tags.

Syntax void SetRFIDSecurityKey (unsigned char TagType, unsigned char
*KeyString, unsigned char KeyType);

Parameters unsigned char TagType

‘V’

‘T’

‘I’

‘M’

‘S’

‘Z’

TAG_ISO15693

TAG_Tagit

TAG_Icode

TAG_MifareISO14443A

TAG_SR176

TAG_ISO14443B

Refer to the table in section 2.3 for more
information on tag types.

unsigned char *KeyString

Pointer to a buffer where key value (string) is stored.

unsigned char KeyType

1 MIFARE_KEYA Key A for Mifare tags

2 MIFARE_KEYB Key B for Mifare tags

Example SetRFIDSecurityKey(

TAG_MifareISO14443A, ‘FFFFFFFFFFFF’, MIFARE_KEYA);

 // set Key A with a specified value for ISO14443A tags

Return Value None

Remarks This routine is used to set security key for some specific tags, such as Mifare
Standard 1K/4K and SLE66R35 tags.

 69

 Chapter 2 Mobile-Specific Function Library

2.4 KEYBOARD WEDGE

For 8300 Series, it can be programmed to send data to the host through the physical
wedge interface by using the SendData() routine. SendData() is governed by a
3-element unsigned character string – WedgeSetting, which is a system-defined global
character array and must be filled with appropriate values before calling SendData().

For those that do not allow the keyboard wedge cable, alternatives are Bluetooth HID,
USB HID and the Wedge Emulator utility. Refer to the table below, 2.4.3 Wedge Emulator,
and Part II: Appendix IV Examples (Bluetooth HID and USB HID sections).

Wedge Options Related Functions Supported by

Keyboard Wedge Cable

WedgeSetting array

SendData()

WedgeReady()

8300 Series

Wedge Emulator via IR, IrDA, RS-232 SendData()

WedgeReady()

open_com()

SetCommType()

close_com()

8000/8300/8500 Series

Wedge Emulator via Bluetooth SPP SendData()

WedgeReady()

open_com()

SetCommType()

close_com()

8000/8300/8500 Series

Bluetooth HID or USB HID WedgeSetting array

SetCommType()

open_com()

com_eot()

write_com()

nwrite_com()

close_com()

8000/8200/8300/8400/8500/8700
Series

70

CipherLab C Programming Part I

extern unsigned char WedgeSetting[3];

The operation of the SendData routine is governed by this unsigned character array.

SendData 8000, 8300, 8500

Purpose To send a string to the host via keyboard wedge interface.

Syntax void SendData (char *out_str);

Parameters char *out_str

Pointer to a buffer where outgoing data is stored.

Example SendData(CodeBuf);

Return Value None

WedgeReady 8000, 8300, 8500

Purpose To check whether the keyboard wedge is ready to send data or not.

Syntax int WedgeReady (void);

Example if (WedgeReady())

SendData(CodeBuf);

Return Value If connection is OK, it returns 1.

Otherwise, it returns 0.

Remarks Before sending data via keyboard wedge, it is recommended to check if the
cable is well connected; otherwise, the transmission may be blocked.

 71

 Chapter 2 Mobile-Specific Function Library

2.4.1 DEFINITION OF THE WEDGESETTING ARRAY

Subscript Bit Default Description

0 7 – 0 0 KBD / Terminal Type

1 7 0 1: Enable capital lock auto-detection

0: Disable capital lock auto-detection

1 6 0 1: Capital lock on

0: Capital lock off

1 5 0 1: Ignore alphabets’ case

0: Alphabets are case-sensitive

1 4 – 3 00 00: Normal

10: Digits at lower position

11: Digits at upper position

1 2 – 1 00 00: Normal

10: Capital lock keyboard

11: Shift lock keyboard

1 0 0 1: Use numeric keypad to transmit digits

0: Use alpha-numeric key to transmit digits

2 6 – 1 0 Inter-character delay (unit: 5ms)

2 0 1 HID Character Transmit Mode

0: Batch processing

1: By character

1ST ELEMENT: KBD / TERMINAL TYPE

The possible value of WedgeSetting[0] is listed below. It determines which type of
keyboard wedge is applied.

Value Terminal Type Value Terminal Type

0 Null (Data Not Transmitted) 21 PS55 002-81, 003-81

1 PCAT (US) 22 PS55 002-2, 003-2

2 PCAT (FR) 23 PS55 002-82, 003-82

3 PCAT (GR) 24 PS55 002-3, 003-3

4 PCAT (IT) 25 PS55 002-8A, 003-8A

5 PCAT (SV) 26 IBM 3477 TYPE 4 (Japanese)

6 PCAT (NO) 27 PS2-30

7 PCAT (UK) 28 Memorex Telex 122 Keys

8 PCAT (BE) 29 PCXT

72

CipherLab C Programming Part I

9 PCAT (SP) 30 IBM 5550

10 PCAT (PO) 31 NEC 5200

11 PS55 A01-1 32 NEC 9800

12 PS55 A01-2 33 DEC VT220, 320, 420

13 PS55 A01-3 34 Macintosh (ADB)

14 PS55 001-1 35 Hitachi Elles

15 PS55 001-81 36 Wyse Enhance KBD (US)

16 PS55 001-2 37 NEC Astra

17 PS55 001-82 38 Unisys TO-300

18 PS55 001-3 39 Televideo 965

19 PS55 001-8A 40 ADDS 1010

20 PS55 002-1, 003-1

For example, if the terminal type is PCAT (US), then the first element of the
WedgeSetting can be defined as follows –

WedgeSetting[0] = 1

2ND ELEMENT

Capital Lock Auto-Detection

Keyboard Type Capital Lock Auto-Detection

PCAT (all available
languages), PS2-30, PS55,
or Memorex Telex

Enabled Disabled

SendData() can automatically
detect the capital lock status of
keyboard. That is, it will ignore
the capital lock status setting and
perform auto-detection when
transmitting data.

SendData() will transmit
alphabets according to the
setting of the capital lock status.

None of the above SendData() will transmit the alphabets according to the setting of
the capital lock status, even though the auto-detection setting is
enabled.

 To enable “Capital Lock Auto-Detection”, add 128 to the value of the second element of the
WedgeSetting array.

Capital Lock Status Setting

In order to send alphabets with correct case (upper or lower case), the SendData() routine must
know the capital lock status of keyboard when transmitting data.

Incorrect capital lock setting will result in different letter case (for example, ‘A’ becomes ‘a’, and
‘a’ becomes ‘A’).

 To set “Capital Lock ON”, add 64 to the value of the second element of the WedgeSetting
array.

Alphabets’ Case

 73

 Chapter 2 Mobile-Specific Function Library

The setting of this bit affects the way the SendData() routine transmits alphabets. SendData()
can transmit alphabets according to their original case (case-sensitive) or just ignore it. If ignoring
case is selected, SendData() will always transmit alphabets without adding shift key.

 To set “Ignore Alphabets Case”, add 32 to the value of the second element of the
WedgeSetting array.

Digits’ Position

This setting can force the SendData() routine to treat the position of the digit keys on the
keyboard differently. If this setting is set to upper, SendData() will add shift key when
transmitting digits. This setting will be effective only when the keyboard type selected is PCAT (all
available language), PS2-30, PS55, or Memorex Telex. However, if the user chooses to send digits
using numeric keypad, this setting is meaningless.

 To set “Lower Position”, add 16 to the value of the second element of the WedgeSetting
array.

 To set “Upper Position”, add 24 to the value of the second element of the WedgeSetting
array.

Shift / Capital Lock Keyboard

This setting can force the SendData() routine to treat the keyboard type to be a shift lock
keyboard or a capital lock keyboard. This setting will be effective only when the keyboard type
selected is PCAT (all available languages), PS2-30, PS55, or Memorex Telex.

 To set “Capital Lock”, add 4 to the value of the second element of the WedgeSetting array.

 To set “Shift Lock”, add 6 to the value of the second element of the WedgeSetting array.

Digit Transmission

This setting instructs the SendData() routine which group of keys is used to transmit digits,
whether to use the digit keys on top of the alphabetic keys or use the digit keys on the numeric
keypad.

 To set “Use Numeric Keypad to Transmit Digits”, add 2 to the value of the second element of
the WedgeSetting array.

Note: DO NOT set “Digits’ Position” and “Shift/Capital Lock Keyboard” unless you are
certain to do so.

3RD ELEMENT: INTER-CHARACTER DELAY

A millisecond inter-character delay time, in the range of 0 to 315 milliseconds, can be
added before transmitting each character. This is used to provide some response time for
PC to process keyboard input.

For example, to set the inter-character delay to 10 milliseconds, the third element of the
WedgeSetting array can be defined as,

WedgeSetting[2] = 2<<1; //2*5ms=10ms, bit 6 ~ 1

74

CipherLab C Programming Part I

2.4.2 COMPOSITION OF OUTPUT STRING

The mapping of the keyboard wedge characters is as listed below. Each character in the
output string is translated by this table when the SendData() routine transmits data.

 00 10 20 30 40 50 60 70 80

0 F2 SP 0 @ P ` p 

1 INS F3 ! 1 A Q a q 

2 DLT F4 “ 2 B R b r 

3 Home F5 # 3 C S c s 

4 End F6 $ 4 D T d t 

5 Up F7 % 5 E U e u 

6 Down F8 & 6 F V f v 

7 Left F9 ‘ 7 G W g w 

8 BS F10 (8 H X h x 

9 HT F11) 9 I Y i y 

A LF F12 * : J Z j z

B Right ESC + ; K [k {

C PgUp Exec , < L \ l |

D CR CR* - = M] m }

E PgDn . > N ^ n ~

F F1 / ? O _ o Dly ENTER*

Note: (1) Dly: Delay 100 millisecond
 (2) ~: Digits of numeric keypad
 (3) CR*/ENTER*: ENTER key on the numeric keypad

The SendData() routine can not only transmit simple characters as shown above, but
also provide a way to transmit combination key status, or even direct scan codes. This is
done by inserting some special command codes in the output string. A command code is
a character whose value is between 0xC0 and 0xFF.

0xC0 : Indicates that the next character is to be treated as scan code. Transmit it as it is,
no translation required.

0xC0 | 0x01 : Send next character with Shift key.

0xC0 | 0x02 : Send next character with Left Ctrl key.

0xC0 | 0x04 : Send next character with Left Alt key.

0xC0 | 0x08 : Send next character with Right Ctrl key.

 75

 Chapter 2 Mobile-Specific Function Library

0xC0 | 0x10 : Send next character with Right Alt key.

0xC0 | 0x20 : Clear all combination status key after sending the next character.

For example, to send [A] [Ctrl-Insert] [5] [scan code 0x29] [Tab] [2] [Shift-Ctrl-A] [B]
[Alt-1] [Alt-2-Break] [Alt-1] [Alt-3], the following characters are inserted into the string
supplied to the SendData() routine.

0x41, 0xC2, 0x01, 0x35, 0xC0, 0x29, 0x09, 0x32, 0xC3, 0x41, 0x42, 0xC4, 0x31
0xE4, 0x32, 0xC4, 0x31, 0xC4, 0x33

Note: (1) The scan code 0x29 is actually a space for PCAT, Alt-12 is a form feed
character, and Alt-13 is an Enter. (2)
The break after Alt-12 is necessary, if omitted the characters will be treated as Alt-1213
instead of Alt-12 and Alt-13.

76

CipherLab C Programming Part I

2.4.3 WEDGE EMULATOR

We provide a wedge emulator program “Serial to Keyboard Converter” (Serial2KB.exe)
for 8000/8300/8500 Series. It lets users convert data to keyboard input via
IR/IrDA/RS-232/Bluetooth SPP in general wedge functions, such as SendData() and
WedgeReady(). This utility helps develop a keyboard key in an application without any
serial port input function. It supports multiple regions, and therefore, an application can
make use of this tool for varying keyboard layout. Refer to Part II: Appendix IV
Examples.

Note: Alternatively, you may use Bluetooth HID for a wedge application on the
Bluetooth-enabled mobile computers, or USB HID for 8200/8400/8700 Series.

 77

 Chapter 2 Mobile-Specific Function Library

2.5 BUZZER

This section describes the routines manipulating the buzzer. The activation of the buzzer
is conducted by specifying a beep sequence, which comprises a number of beep
frequency and beep duration pairs. Once on_beeper() or play() is called, the activation
of the buzzer is automatically handled by the background operating system. There is no
need for the application program to wait for the buzzer to stop. Yet, beeper_status()
and off_beeper() are used to determine whether a beep sequence is undergoing or is to
be terminated immediately.

Note: 8200 is equipped with a speaker instead of a buzzer.

2.5.1 BEEP SEQUENCE

A beep sequence is an integer array that is used to instruct how the buzzer is activated.
It comprises a number of pairs of beep frequency and duration. Each pair is one beep.

Beep Sequence = Beep Frequency, Beep Duration, ...

2.5.2 BEEP FREQUENCY

A beep frequency is an integer that is used to specify the frequency (tone) of the buzzer
when it is activated. However, the value of the beep frequency is not the actual
frequency that the buzzer generates. It is calculated by the following formula:

Beep Frequency = 76000 / Actual Frequency Desired

For example, if a frequency of 4 KHz is desired, the value of beep frequency should be 19.
Suitable frequency range is from 1 KHz to 6 KHz, whereas the peak is at 4 KHz. If no
sound is desired (pause), the beep frequency should be set to 0.

Note: A beep sequence with frequency set to 0 causes the buzzer to pause, not to stop.

2.5.3 BEEP DURATION

Beep duration is an integer that is used to specify how long a buzzer will be working at a
specified beep frequency; it is specified in units of 0.01 second. To have the buzzer work
for one second, the beep duration should be set to 100.

Note: When the value of beep duration is set to 0, it will end a beep sequence; the
buzzer will stop working.

78

CipherLab C Programming Part I

beeper_status

Purpose To check if a beep sequence is in progress.

Syntax int beeper_status (void);

Example while (beeper_status()); // wait till a beep sequence is completed

Return Value If beep sequence is undergoing, it returns 1.

Otherwise, it returns 0.

get_beeper_vol 8200, 8400

Purpose To get the volume of beeper.

Syntax int get_beeper_vol (void);

Example val = get_beeper_vol(); // get the volume level

Return Value It returns the volume level.

set_beeper_vol 8200, 8400

Purpose To set the volume of beeper.

Syntax void set_beeper_vol (int level);

Parameters int level

0 MUTE_VOL Set the volume level to “Mute” (8200 only)

1 LOW_VOL Set the volume level to “Low”

2 MEDIUM_VOL Set the volume level to “Medium”

3 HIGH_VOL Set the volume level to “High”

Example set_beeper_vol(1); // set the volume level to “Medium”

Return Value None

 79

 Chapter 2 Mobile-Specific Function Library

on_beeper

Purpose To specify a beep sequence of how a buzzer works, or to play a wave table (for
8200 only).

Syntax void on_beeper (const int *sequence); // 8000, 8300, 8400, 8500, 8700

 unsigned char on_beeper (const void *buffer); // 8200 only

Parameters const int *sequence

Pointer to a buffer where a beep sequence is stored.

const void *buffer

Pointer to a buffer where

(1) a beep sequence is stored, or

(2) a wave table is stored, or

(3) the file name of a wave file on SD card is stored. Filename needs to have
a prefix, such as “A:\\”, “a:\\”, “A:/”, or “a:/”.

Example (1) const int two_beeps [] = {19, 10, 0, 10, 19, 10, 0, 0};

on_beeper(two_beeps);

Example (2) on_beeper(“A:\\Sound.wav”); // play a wave file from SD card on 8200

Example (3) on_beeper(“A:\\Sound”); // filename extension is optional

Return Value For 8200 Series, the return value can be one of the following:

Return Value

0 Success

1 Invalid file format

2 Fail to open file on SD Card

Remarks This routine specifies a beep sequence to instruct how a buzzer works. If there
is a beep sequence already in progress, the later will override the original one.

For 8200, the supported audio file format is *.wav files, which meet the
following requirements:

 NumChannels: mono or stereo

 SampleRate: 8000, 11025, 22050, 32000, 44100

 BitsPerSample: 8 bits or 16 bits

off_beeper

Purpose To terminate a beep sequence immediately if it is in progress.

Syntax void off_beeper (void);

Example off_beeper();

Return Value None

80

CipherLab C Programming Part I

play

Purpose To play melody by specifying a sequence of how a buzzer works.

Syntax void play (const char *sequence);

Parameters char *sequence

Pointer to a buffer where a melody sequence is stored.

Example const char song [] = {0x31, 10, 0x32, 10, 0x33, 10, 0x34, 10,

 0x35, 10, 0x36, 10, 0x37, 10, 0x41, 10,

 0x31, 4, 0x32, 4, 0x33, 4, 0x34, 4,

 0x35, 4, 0x36, 4, 0x37, 4, 0x41, 4, 0x00, 0x00} ;

play(song);

Return Value None

Remarks This routine is similar to on_beeper(). However, the frequency character is
specified as:

Bit 7 6 5 4 3 2 1 0

 Reserved

Frequency for A (La) Scale # key Musical Scale

000: Reserved

001(1): 55 Hz

010(2): 110 Hz

011(3): 220 Hz

100(4): 440 Hz

101(5): 880 Hz

110(6): 1760 Hz

111(7): 3520 Hz

0: disable

1: enable

000: Reserved

001(1): Do

010(2): Re

011(3): Mi

100(4): Fa

101(5): So

110(6): La

111(7): Ti

 81

 Chapter 2 Mobile-Specific Function Library

2.6 LED INDICATOR

In general, the dual-color LED indicator or indicators on the mobile computer are used to
indicate the system status, such as good read or bad read, error occurrence, etc.

set_led

Purpose To set the LED operation mode.

Syntax void set_led (int led, int mode, int duration);

Parameters int led

0 LED_RED Red LED light in use.

1 LED_GREEN Green LED light in use.

2 LED_BLUE Blue LED light in use for the 2nd LED on
8200/8400/8700, which is used for wireless
communications by default.

3 LED_GREEN2 Green LED light in use for the 2nd LED on
8200/8400/8700, which is used for wireless
communications by default.

int mode

0 LED_OFF Off for (duration * 0.01) seconds and then on

1 LED_ON On for (duration * 0.01) seconds and then off

2 LED_FLASH Flash, turn on and then off for (duration *0.01)
seconds. Then repeat.

0xf0 LED_SYSTEM
_CTRL

Default setting for the 2nd LED on 8200/8400/8700.

 For LED_BLUE, it is set to indicate Bluetooth
status: flashing quickly for “waiting for connection”
or “connecting”; flashing slowly for “connected”.

 For LED_GREEN2, it is set to indicate Wi-Fi status:
flashing quickly for “waiting for connection” or
“connecting”; flashing slowly for “connected”.

0xf1 LED_USER_
CTRL

Used for the 2nd LED on 8200/8400/8700 if user control
is desired. See example below.

int duration

Specify duration in units of 10 milli-seconds.

 This parameter is ignored when the 2nd parameter is LED_SYSTEM_CTRL
or LED_USER_CTRL.

Example set_led(LED_RED, LED_FLASH, 50);

 // set red LED to flash for each 1 second cycle

set_led(LED_BLUE, LED_USER_CTRL, 0);

set_led(LED_BLUE, LED_FLASH, 20); // set blue LED on 8400 for user control

Return Value None

82

CipherLab C Programming Part I

2.7 VIBRATOR & HEATER

This section describes the routines for configuring the vibrator and heater.

 Vibrator: It can be used for status indication.
 Heater: It is used to ensure the LCD functions well even in very cold weather when

the environmental temperature falls below -10 Celsius degrees.

2.7.1 VIBRATOR

The vibrator function is currently supported on 8200/8300/8400/8500/8700 Series.

Note: For 8300 Series, the hardware version must be 4.

GetVibrator 8200, 8300, 8400, 8500, 8700

Purpose To get the status of the vibrator.

Syntax int GetVibrator (void);

Example val = GetVibrator();

Return Value If enabled (On), it returns 1.

Otherwise, it returns 0.

SetVibrator 8200, 8300, 8400, 8500, 8700

Purpose To set the vibrator.

Syntax void SetVibrator (int mode);

Parameters int mode

0 Turn off the vibrator

1 Turn on the vibrator

Example SetVibrator(1); // turn on the vibrator

Return Value None

Remarks Once the vibrator is enabled by SetVibrator(1), it will automatically start
vibrating until the vibrator is turned off by SetVibrator(0).

 83

 Chapter 2 Mobile-Specific Function Library

2.7.2 HEATER

GetHeaterMode 8500

Purpose To get the status of the heater.

Syntax int GetHeaterMode (void);

Example mode = GetHeaterMode();

Return Value If enabled (On), it returns 1.

Otherwise, it returns 0.

Remarks This routine checks the heating functionality.

SetHeaterMode 8500

Purpose To set the heater.

Syntax void SetHeaterMode (int mode);

Parameters int mode

0 Turn off the heater

1 Turn on the heater

Example SetHeaterMode(1); // turn on the heater

Return Value None

Remarks Once the heating functionality is enabled by SetHeaterMode(1) and the
environmental temperature falls below -10 Celsius degrees, it will automatically
start heating until the heater is turned off by SetHeaterMode(0).

84

CipherLab C Programming Part I

2.8 REAL-TIME CLOCK

This section describes the calendar and timer manipulation routines.

2.8.1 CALENDAR

The system date and time are maintained by the calendar chip, and they can be retrieved
from or set to the calendar chip by the get_time() and set_time() functions. A backup
rechargeable Lithium battery keeps the calendar chip running even when the power is
turned off.

 The calendar chip automatically handles the leap year. The year field set to the
calendar chip must be in four-digit format.

Note: The system time variable sys_msec and sys_sec is maintained by CPU timers
and has nothing to do with this calendar chip. Accuracy of these two time variables
depends on the CPU clock and is not suitable for precise time manipulation. They are
reset to 0 upon powering up.

DayOfWeek

Purpose To get the day of the week information.

Syntax int DayOfWeek (void);

Example day = DayOfWeek();

Return Value The return value can be 1 ~ 7.

Remarks This routine returns the day of the week information based on the current date.

Return Value

1 ~ 6 Monday to Saturday

7 Sunday

get_time

Purpose To get the current date and time from the calendar chip.

Syntax void get_time (char *cur_time);

Parameters char *cur_time

Pointer to a buffer where the system date and time is stored.

 The character array cur_time allocated must have a minimum of 15 bytes
to accommodate the date, time, and the string terminator.

 The format of the system date and time is “YYYYMMDDhhmmss”.

Example get_time(system_time);

Return Value None

 85

 Chapter 2 Mobile-Specific Function Library

set_time

Purpose To set new date and time to the calendar chip.

Syntax int set_time (char *new_time);

Parameters char *new_time

Pointer to a buffer where the new date and time is stored.

 The character array new_time allocated must have a minimum of 15
bytes to accommodate the date, time, and the string terminator.

 The format of the system date and time is “YYYYMMDDhhmmss”.

YYYY year 4 digits

MM month 2 digits, 01 ~ 12

DD day 2 digits, 01 ~ 31

hh hour 2 digits, 00 ~ 23

mm minute 2 digits, 00 ~ 59

ss second 2 digits, 00 ~ 59

Example set_time(“20050805125800”); // AUGUST 5, 2005 12:58:00

Return Value If successful, it returns 1.

Otherwise, it returns 0 to indicate the format is wrong, or the calendar chip is
malfunctioning.

Remarks If the format is invalid (e.g. set hour to 25), the operation is simply denied and
the system time remains unchanged.

86

CipherLab C Programming Part I

2.8.2 ALARM

These are applicable to 8000/8200/8400 Series only.

GetAlarm 8000, 8200, 8400

Purpose To get the current alarm time.

Syntax void GetAlarm (char *cur_time);

Parameters char *cur_time

Pointer to a buffer where the alarm time is stored.

 The character array cur_time allocated must have a minimum of 15 bytes
to accommodate the date, time, and the string terminator.

 The format of the alarm date and time is “YYYYMMDDhhmmss”.

Example GetAlarm(alarm_time);

Return Value None

SetAlarm 8000, 8200, 8400

Purpose To set the alarm time.

Syntax void SetAlarm (char *new_time);

Parameters char *new_time

Pointer to a buffer where the alarm time is stored.

 The character array new_time allocated must have a minimum of 15
bytes to accommodate the date, time, and the string terminator.

 The format of the alarm date and time is “YYYYMMDDhhmmss”.

YYYY year 4 digits

MM month 2 digits, 01 ~ 12

DD day 2 digits, 01 ~ 31

hh hour 2 digits, 00 ~ 23

mm minute 2 digits, 00 ~ 59

ss second 2 digits, 00 ~ 59

Example SetAlarm(“20050805125800”); // AUGUST 5, 2005 12:58:00

Return Value None

Remarks If the format is invalid (e.g. set hour to 25), the operation is simply denied and
the alarm time remains unchanged.

 87

 Chapter 2 Mobile-Specific Function Library

2.9 BATTERY & CHARGING

This section describes the power management functions that can be used to monitor the
voltage level of the main and backup batteries. The mobile computer is equipped with a
main battery for normal operation as well as a backup battery for keeping SRAM data
and time accuracy.

2.9.1 BATTERY VOLTAGE

get_vmain

Purpose To get the voltage level of the main battery, in units of mV.

Syntax int get_vmain (void);

Example if (get_vmain() < 2200) // alkaline battery

 puts(“Battery is low.”);

Return Value It returns the voltage reading (milli-volt).

get_vbackup

Purpose To get the voltage level of the backup battery, in units of mV.

Syntax int get_vbackup (void);

Example bat1 = get_vbackup();

Return Value It returns the voltage reading (milli-volt).

88

CipherLab C Programming Part I

2.9.2 CHARGING STATUS

charger_status

Purpose To check the charging progress of the main battery.

Syntax int charger_status (void);

Example if (charger_status == CHARGE_DONE)

puts(“Battery is full.”);

Return Value For 8000/8300 Series, the return value can be one of the following:

Return Value

0 CHARGE_STANDBY Not connected to any external power.

1 CHARGING The battery is being charged.

2 CHARGE_DONE The battery is fully charged.

3 CHARGE_FAIL Battery charging fails.

For 8200/8400/8700 Series, the return value can be one of the following:

Return Value

0 CHARGE_STANDBY Not connected to any external power.

1 CHARGING_5V The battery is being charged via 5V power cord.

2 CHARGE_DONE The battery is fully charged.

3 CHARGE_FAIL Battery charging fails.

17 CHARGING_USB The battery is being charged via USB.

For 8500 Series, the return value can be one of the following:

Return Value

0 CHARGING The battery is being charged.

1 CHARGE_DONE The battery is fully charged.

2 CHARGE_FAIL Battery charging fails.

3 CHARGE_STANDBY Not connected to any external power.

See Also GetUSBChargeCurrent, SetUSBChargeCurrent

 89

 Chapter 2 Mobile-Specific Function Library

GetUSBChargeCurrent 8200, 8400, 8700

Purpose To get the charging current via USB port on the mobile computer.

Syntax int GetUSBChargeCurrent (void) ;

Example val = GetUSBChargeCurrent(); // get charging setting

Return Value For 8200, the return value can be either 0 or 1 or 2.

For 8400, the return value can be either 0 or 1.

For 8700, the return value can be either 0 or 2.

SetUSBChargeCurrent 8200, 8400, 8700

Purpose To set the charging current via USB port on the mobile computer.

Syntax void SetUSBChargeCurrent (int current_type) ;

Parameters int current_type

0 CURRENT_500mA Set charging at 500 mA.

1 CURRENT_100mA Set charging at 100 mA (8200/8400 only)

2 CURRENT_0mA Disable charging (8200/8700 only)

Example SetUSBChargeCurrent(CURRENT_500mA); // set 500 mA for USB charging

Return Value None

90

CipherLab C Programming Part I

2.10 KEYPAD

The background routine constantly scans the keypad to check if any key is being pressed.
There is a keyboard buffer of size 32 bytes. However, if the buffer is full, the keystrokes
followed will be ignored. Normally, a C program needs constantly to check if any
keystroke is available in the buffer.

2.10.1 GENERAL

CheckKey

Purpose To detect whether the specified keys have been pressed simultaneously or not.

Syntax int CheckKey (const int scan_code,...);

Parameters Specify the scan codes of the keys as many as you like, but be sure to specify
the type as the last parameter. There are two types:

 int LastIsType

-1 CHK_EXC Exclusive checking – only the keys being pressed match the
keys specified, will the function return 1.

-2 CHK_INC Inclusive checking – as long as the keys being pressed
include the keys specified, this function will return 1.

Example while (1)

{

if (CheckKey(SC_1, SC_2, SC_3, CHK_EXC))

 printf(“The user presses 1, 2, 3 simultaneously.”);

OSTimeDly(8); // delay 8x5 = 40 ms

}

Return Value If successful, it returns 1.

Otherwise, it returns 0.

Remarks This routine scans the keypad to check if the specified keys are being pressed
or not. Usually, this is used to detect special key combinations for a special
purpose.

Note that it may need up to 40 milli-seconds for the system to scan the whole
keypad; therefore, two consecutive calls should not be made during the same
period. If you are not sure how long it may take to run your code between two
calls, you may call the OSTimeDly routine to ensure the delay is enough.

See Also OSTimeDly

 91

 Chapter 2 Mobile-Specific Function Library

clr_kb

Purpose To clear the keyboard buffer.

Syntax void clr_kb (void);

Example clr_kb();

Return Value None

Remarks This routine is automatically called by the system upon powering up the mobile
computer.

See Also getchar, kbhit

getchar

Purpose To read one character from the keyboard buffer and then remove it.

Syntax int getchar (void);

Example c = getchar();

if (c > 0)

printf(“Key %d pressed.”, c);

else

printf(“No key pressed.”);

Return Value If successful, it returns the character read from the keyboard buffer.

Otherwise, it returns 0 to indicate the keyboard buffer is already empty.

Remarks This routine can be used with menu operation to detect a shortcut key being
pressed, or with touch screen operation to detect a touched item.

See Also clr_kb, kbhit, putch

92

CipherLab C Programming Part I

GetKBDModifierStatus

Purpose To get information of the modifier keys (SHIFT/ALT/FN) as well as keypad
control settings.

Syntax unsigned int GetKBDModifierStatus (void);

Example state = GetKBDModifierStatus();

Return Value An unsigned integer is returned, summing up values of each item.

Remarks Each bit indicates a certain item, and its value can be 0 or 1.

Bit Item Remarks

0 Power key 0: Disable, 1: Enable

1 FN modification (= function mode) 0: Disable, 1: Enable

2 FN toggle 0: Auto Resume mode,

1: Toggle mode

3 LCD contrast control:

FN + Up/Down (8000/8300/8500/8700)

Backlight key + Left/Right (8200/8400)

0: Disable, 1: Enable

 4 SHIFT modification 0: Disable, 1: Enable

5 FN as normal key 0: Disable, 1: Enable

6 SHIFT as normal key 0: Disable, 1: Enable

7 ALT as normal key 0: Disable, 1: Enable

8 ALT modification 0: Disable, 1: Enable

9 LCD backlight control:

FN + Left/Right (8500/8700)

Backlight key + Up/Down (8200/8400)

0: Disable, 1: Enable

10 Multi-Key mode 0: Disable, 1: Enable

11 Backlight key as normal key (8200/8400
only)

0: Disable, 1: Enable

12 Status of F9~F20 (8400, 29-key only) 0: Disable, 1: Enable

For 8000/8300 Series, it returns 9 to indicate the following items are enabled
by default:

 Bit 0 – Power key enabled

 Bit 3 – LCD contrast control enabled

For 8200/8400/8500/8700 Series, it returns 0x209 to indicate the following
items are enabled by default:

 Bit 0 – Power key enabled

 Bit 3 – LCD contrast control enabled

 Bit 9 – LCD backlight control enabled

See Also get_shift_lock_state, GetAltKeyState, GetFuncExtKey, GetFuncToggle,
set_shift_lock, SetAltKey, SetFuncExtKey, SetFuncToggle, SetPwrKey

 93

 Chapter 2 Mobile-Specific Function Library

GetKeyClick

Purpose To get the current setting of key click.

Syntax int GetKeyClick (void);

Example state = GetKeyClick();

Return Value If key click is enabled, it returns 1~5 to indicate different tones.

Otherwise, it returns 0.

Remarks The key click is set to be enabled by default, but it can be changed from
System Menu or through programming.

See Also SetKeyClick

kbhit

Purpose To check whether there is any key being pressed or not.

Syntax int kbhit (void);

Example for (;!kbhit();); // wait till a key is pressed

Return Value If any key is pressed, it returns 1 to indicate a character is put in the keyboard
buffer.

Otherwise, it returns 0 to indicate the buffer is empty.

See Also clr_kb, getchar

putch 8200, 8300, 8400, 8500, 8700

Purpose To put one character to the keyboard buffer.

Syntax void putch (unsigned char c);

Parameters unsigned char c

A character to be put into the keyboard buffer.

Example putch(KEY_ESC); // put ESC key value to keyboard buffer

Return Value If successful, it returns the character read from the keyboard buffer.

Otherwise, it returns a null character (0x00) to indicate the buffer is empty.

Remarks This routine provides the capability to simulate the keypad operation.

For example, it can be implemented with touch screen operation. The key value
of a touched item, which is designed as a key on the screen, can be put to the
keyboard buffer by putch. It can then be detected by using getchar().

See Also clr_kb, getchar

94

CipherLab C Programming Part I

SetKeyClick

Purpose To set the key click.

Syntax void SetKeyClick (int status);

Parameters int status

0 Disable the key click.

1 ~ 5 Enable the key click; each stands for a specific tone.

Example SetKeyClick(1); // enable key click sound

Return Value None

Remarks The key click is set to be enabled by default, but it can be changed from
System Menu or through programming. Moreover, the frequency and duration
pair of the key click is held in the system global variable KEY_CLICK, which can
be used to generate the key click sound. For example,

on_beeper(KEY_CLICK);

See Also GetKeyClick, KEY_CLICK

TriggerStatus

Purpose To check whether the SCAN key has been pressed or not.

Syntax int TriggerStatus (void);

Example if (TriggerStatus())

printf(“Scan key is pressed.”);

Return Value If the SCAN key is pressed, it returns 1.

Otherwise, it returns 0.

SetTrigger 8000,8200,8400,8700

Purpose To set the SCAN key.

Syntax Void SetTrigger (int state);

Parameters int status

0 Set the Scan key released.

1 Set the Scan key pressed.

Example SetTrigger(1); //set the scan key pressed

Return Value None

Remarks This function is used as software trigger.

OSKToggle 8000,8200,8400,8700

Purpose To toggle the display of on-screen keypad on an iOS-based device.

Syntax Void OSKToggle (void);

Example OSKToggle(void);

Return Value None

Remarks After connection of Bluetooth HID is established, this function is used to toggle
the display of on-screen keypad on an iOS-based device.

 95

 Chapter 2 Mobile-Specific Function Library

2.10.2 ALPHA KEY

dis_alpha

Purpose To disable the ALPHA key.

Syntax void dis_alpha (void);

Example dis_alpha();

Return Value None

Remarks This routine disables the ALPHA key and sets the input mode to numeric only.

 The same result can be obtained from LockAlphaState(0).

en_alpha

Purpose To enable or unlock the ALPHA key.

(1) 8000/8200/8500/8700 Series: it can be set to ALPHA_ROLLING only.

(2) 8300 Series, 24-key: it can be set to ALPHA_ROLLING only.

(3) 8300 Series, 39-key: it can be set to ALPHA_FIXED or ALPHA_ROLLING.

(4) 8400 Series, 29-key: it can be set to ALPHA_ROLLING only.

(5) 8400 Series, 39-key: it can be set to ALPHA_FIXED only.

Syntax void en_alpha (int type) ;

Parameters int type

1 ALPHA_FIXED It shows only one character when pressing
one key. The character displayed depends on
the current input mode.

2 ALPHA_ROLLING It takes turns to show alphabets and number
when pressing the same key; the time interval
between each press must not exceed one
second. For example, the “2ABC” key can
generate “A”, “B”, “C” or “2” by turns within
one second.

For 8300, 39-key:

It takes turns to show alphabets and number
when pressing the same key; the time interval
between each press must not exceed one
second. For example, the “2B” key can
generate “B” and “2” by turns.

Example en_alpha();

Return Value None

Remarks By default, the input mode is numeric and can be modified by the ALPHA key.

 If the ALPHA key is disabled by dis_alpha(), this routine is used to enable
it.

 If the ALPHA key is locked by LockAlphaState(), this routine is used to
unlock it.

96

CipherLab C Programming Part I

get_alpha_enable_state

Purpose To get the state of the ALPHA key.

Syntax int get_alpha_enable_state (void);

Example state = get_alpha_enable_state();

Return Value The return value can be one of the following:

Return Value

-1 No ALPHA key available on 8500, 44-key (Type I).

0 The ALPHA key is disabled, resulting from dis_alpha() and
LockAlphaState().

1 The ALPHA key is enabled and the keypad behavior is set to
ALPHA_FIXED, resulting from en_alpha().

2 The ALPHA key is enabled and the keypad behavior is set to
ALPHA_ROLLING, resulting from en_alpha().

Remarks By default, the ALPHA key is enabled.

get_alpha_lock_state

Purpose To get information of the ALPHA state for input mode, locked or unlocked.

Syntax int get_alpha_lock_state (void);

Example state = get_alpha_lock_state();

Return Value The return value can be one of the following:

Return Value

-1 No ALPHA key available on 8500, 44-key (Type I).

0 Numeric mode

1 Upper case alpha mode

2 Lower case alpha mode

3 Function mode (8000, 8200 only)

Remarks This routine gets the current state of input mode, resulting from either
LockAlphaState() or set_alpha_lock().

 97

 Chapter 2 Mobile-Specific Function Library

LockAlphaState

Purpose To set the ALPHA state for input mode and lock (= disable) the ALPHA key.

Syntax void LockAlphaState (int state);

Parameters int state

0 NUMERIC_KAYPAD Locked to numeric mode

1 UPPER_CASE Locked to upper case alpha mode

2 LOWER_CASE Locked to lower case alpha mode

3 FUNCTION_KEY Locked to function mode

(8000, 8200 only)

Example LockAlphaState(2); // lower case alpha mode, ALPHA key disabled

Return Value None

Remarks This routine specifies the input mode, which cannot be modified by the ALPHA
key.

set_alpha_lock

Purpose To set the ALPHA state for input mode, unlocked.

Syntax void set_alpha_lock (int state);

Parameters int state

0 Enable numeric mode

1 Enable upper case alpha mode

2 Enable lower case alpha mode

3 Enable function mode (8000, 8200 only)

Example set_alpha_lock(1); // upper case alpha mode, ALPHA key enabled

Return Value None

Remarks This routine sets the input mode, which can be modified by the ALPHA key.

 If the ALPHA key is disabled by dis_alpha() or locked by LockAlphaState(),
use en_alpha() to enable (= unlock) it.

98

CipherLab C Programming Part I

2.10.3 SHIFT KEY

The SHIFT key is a modifier key that converts the alphabets from upper case to lower
case. Here are the functions to set or get its status.

Note: The SHIFT key is available on the 8500 44-key (Type I) mobile computer only.

get_shift_lock_state 8500

Purpose To get the SHIFT state.

Syntax int get_shift_lock_state (void);

Example state = get_shift_lock_state();

Return Value The return value can be 0 ~ 3. However, it returns -1 for 8500 Series 24-key
and 44-TE key (Type II) because of no SHIFT key.

set_shift_lock 8500

Purpose To set the SHIFT state, unlocked.

Syntax void set_shift_lock (int state);

Parameters int state

0 Disable SHIFT modification (default)

1 Enable SHIFT modification

2 Disable SHIFT modification + SHIFT as normal key

3 Enable SHIFT modification + SHIFT as normal key

Example set_shift_lock(0); // No SHIFT modification

Return Value None

Remarks This routine sets the SHIFT state, which can be modified by the SHIFT key.

 99

 Chapter 2 Mobile-Specific Function Library

2.10.4 ALT KEY

The ALT key serves as a modifier key. Here are the functions to set or get its status.

Note: The ALT key is available on the 8500 44-key (Type I) or 8500/8700 44-TE (Type II)
key mobile computer.

GetAltKeyState 8500, 8700

Purpose To get the ALT state.

Syntax int GetAltKeyState (void);

Example state = GetAltKeyState();

Return Value The return value can be 0 ~ 3. However, it returns -1 for 8500/8700 Series
24-key because of no ALT key.

SetAltKey 8500, 8700

Purpose To set the ALT state.

Syntax void SetAltKey (int state);

Parameters int state

0 Disable ALT modification (Default)

1 Enable ALT modification

2 Disable ALT modification + ALT as normal key

3 Enable ALT modification + ALT as normal key

Example SetAltKey(0) // No ALT modification

Return Value None

Remarks This routine sets the ALT state, which can be modified by the ALT key.

100

CipherLab C Programming Part I

2.10.5 FN KEY

The function (FN) key serves as a modifier key used to produce a key combination.

1) To enable this modifier key, press the function (FN) key on the keypad, and the

status icon “ ” will be displayed on the screen.

2) Press another key to get the value of the key combination (say, F1), and the status
icon will go off immediately when the function (FN) key is set to Auto Resume mode
by SetFuncToggle(). That is, this modifier key can work one time only.

3) To get the value of another key combination, repeat the above steps.

However, on condition that the function (FN) key is set to Toggle mode by
SetFuncToggle(), this modifier key can work as many times as desired until it is
pressed again to exit the function mode.

GetFuncToggle 8300, 8400, 8500, 8700

Purpose To get information of the FN toggle state.

Syntax int GetFuncToggle (void);

Example state = GetFuncToggle();

Return Value (1) 8300 Series: the return value can be 0 ~ 1.

(2) 8400 Series: the return value can be 0 ~ 4, and 6.

(3) 8500/8700 Series: the return value can be

 0 ~ 3 (24-key or 44-key, Type I)

 0 ~ 4 and 6 (44 key, Type II)

 101

 Chapter 2 Mobile-Specific Function Library

SetFuncToggle 8300, 8400, 8500, 8700

Purpose To set the state of the FN (function) toggle.

Syntax void SetFuncToggle (int state);

Parameters For 8300 Series, 24-key and 39-key:

int state

0 Auto Resume mode + Multi-Key mode (default)

1 Toggle mode + Multi-Key mode

For (1) 8400 Series, 24-key and 39-key (2) 8500/8700 Series, 44-key Type II:

int state

0 Auto Resume mode + Multi-Key mode (default)

1 Toggle mode + Multi-Key mode

2 Auto Resume mode + Multi-Key mode + FN as normal key

3 Toggle mode + Multi-Key mode + FN as normal key

4 Multi-Key mode

6 Multi-Key mode + FN as normal key

For 8500 Series, 24-key and 44-key Type I:

int state

0 Auto Resume mode + Multi-Key mode (default)

1 Toggle mode + Multi-Key mode

2 Auto Resume mode + Multi-Key mode + FN as normal key

3 Toggle mode + Multi-Key mode + FN as normal key

4 No effect

  Auto Resume mode — The function mode is toggled on by pressing the
function key; it is toggled off by pressing the second key of the key
combination. A status icon is displayed on the screen to indicate the status.
However, it allows re-pressing the function key to exit the function mode
on 8300/8400/8700!

 Toggle mode — The function mode is toggled on by pressing the function
key; it can only be toggled off by pressing the function key again. A status
icon is displayed on the screen to indicate the status.

 Multi-Key mode — For any key combination, it requires pressing two keys
at the same time, or holding down the function key followed by the second
key.

 FN as normal key — The function key is treated as a normal key.

Example SetFuncToggle(0) // set the FN state to Auto Resume and Multi-Key mode

Return Value None

102

CipherLab C Programming Part I

EXTENDED FUNCTION KEYS

By default, F1~F8 are available on on 8400 Series, 29-key. However, you may use key
combinations for F9~F20 after SetFuncExtKey(1) is called.

GetFuncExtKey 8400

Purpose To check whether the extended function keys F9~F20 are enabled.

Syntax int GetFuncExtKey (void);

Example state = GetFuncExtKey;

Return Value If enabled, it returns 1.

Otherwise, it returns 0.

SetFuncExtKey 8400

Purpose To set the state of extended function keys F9~F20.

Syntax void SetFuncExtKey (int state) ;

Parameters int state

0 Disable F9~F20

1 Enable F9~F20

Example SetFuncExtKey(1); // enable key combinations F9~F20

Return Value None

Remarks Depending on the state of the FN (function) toggle, the following key
combinations are used for F9~F20.

Orange key (FN) + Number/Symbol key Result

FN + [-] F9

FN + [.] F10

FN + [1] F11

FN + [2] F12

FN + [3] F13

FN + [4] F14

FN + [5] F15

FN + [6] F16

FN + [7] F17

FN + [8] F18

FN + [9] F19

FN + [0] F20

See Also SetFuncToggle

 103

 Chapter 2 Mobile-Specific Function Library

2.10.6 ENTER KEY

The yellow key on the 8200 mobile computer is set to work as the ENTER key by default,
which is identified as the “middle” ENTER key.

 After InitScanner1() is called, the yellow key works as the SCAN key.
 After HaltScanner1() is called, the yellow key works as the ENTER key again.

CheckKeyEnter 8200, 8700

Purpose To check which ENTER key is being pressed.

Syntax unsigned char CheckKeyEnter (void) ;

Example unsigned char c,type;

c=getchar();

if (c == KEY_CR){

 type=CheckKeyEnter();

 if(type==1){

 printf(“right enter”);

 }else if(type==2){

 printf(“left enter”);

 } else if(type==3){

 printf(“middle enter”);

 }

}

Return Value The return value can be one of the following:

Return Value

0 No ENTER key is being pressed.

1 Right ENTER key is being pressed.

2 Left ENTER key is being pressed.

3 Middle ENTER key is being pressed. (8200/8400/8700 only)

4 Pistol ENTER key is being pressed. (8200/8700 only)

Remarks This function shall be called after getchar().

SetMiddleEnter 8200, 8400, 8700

Purpose To enable or disable using the yellow SCAN key as ENTER key.

Syntax void SetMiddleEnter (int state) ;

Parameters int state

0 Disable middle ENTER key (Default for 8400/8700)

1 Enable middle ENTER key (Default for 8200)

Example SetMiddleEnter(1);

Return Value None

104

CipherLab C Programming Part I

SetPistolEnter 8200, 8700

Purpose To enable or disable using the pistol trigger as ENTER key.

Syntax void SetPistolEnter (int state) ;

Parameters int state

0 Disable pistol ENTER key (Default)

1 Enable pistol ENTER key

Example SetPistolEnter(1);

Return Value None

2.11 LCD

The liquid crystal display (LCD) on the mobile computer is FSTN graphic display. The
display capability may vary due to the size of LCD panel. A coordinate system is used for
the cursor movement routines to determine the cursor location — (x, y) indicates the
column and row position of cursor. The coordinates given to the top left point is (0, 0),
while those of the bottom right point depends on the size of LCD and font. For displaying
a graphic, the coordinate system is on dot (pixel) basis.

Series Screen Size Top_Left (x, y) Bottom_Right (x, y)

8000 100 x 64 dots (0, 0) (99, 63)

8300 128 x 64 dots (0, 0) (127, 63)

8200, 8400 160 x 160 dots (0, 0) (159, 159)

8500, 8700 160 x 160 dots (0, 0) (159, 159)

2.11.1 PROPERTIES

 Contrast: Level 0 ~ 7. (0~5 for 8200). It is set to level 4 by default.
 Backlight: It is turned off by default. The shortcut key [FN] + [Enter] can be used as

a toggle except for 8200/8400 Series, which has a backlight key instead.

Note: When the backlight is turned on by pressing [FN] + [Enter] simultaneously, it is
set to level 2 on 8200/8400/8500/8700 Series.

DecContrast

Purpose To decrease the LCD contrast.

Syntax void DecContrast (void);

Example DecContrast();

Return Value None

Remarks This routine decreases the LCD contrast by one level each time it is called, and
the minimum value is 0.

 105

 Chapter 2 Mobile-Specific Function Library

IncContrast

Purpose To increase the LCD contrast.

Syntax void IncContrast (void);

Example IncContrast();

Return Value None

Remarks This routine increases the LCD contrast by one level each time it is called, and
the maximum value is 7. (Maximum value 5 for 8200).

See Also GetContrast, SetContrast, SetContrastControl

GetContrast

Purpose To get the contrast level of the LCD.

Syntax void GetContrast (void);

Example int nContrastLevel = GetContrast();

Return Value It returns the current contrast level, ranging from 0 to 7. (0 to 5 for 8200)

Remarks This routine indicates the current contrast level of the LCD, which is set to 4 by
default.

SetContrast

Purpose To set the contrast level of the LCD.

Syntax void SetContrast (int level);

Example SetContrast(4);

Return Value None

Remarks This routine specifies the contrast level of the LCD, and the valid value ranges
from 0 (low) to 7 (high). (0 to 5 for 8200)

See Also DecContrast, IncContrast, SetContrastControl

GetVideoMode

Purpose To get the display mode of the LCD.

Syntax int GetVideoMode (void);

Example if (GetVideoMode() == VIDEO_NORMAL)

puts(“Normal Mode”);

Return Value Return Value

0 VIDEO_NORMAL Normal mode in use

1 VIDEO_REVERSE Reverse mode in use

Remarks This routine indicates the current display mode of the LCD.

106

CipherLab C Programming Part I

SetVideoMode

Purpose To set the display mode of the LCD.

Syntax void SetVideoMode (int mode);

Parameters int mode

0 VIDEO_NORMAL Normal mode in use

1 VIDEO_REVERSE Reverse mode in use

Example SetVideoMode(VIDEO_REVERSE); // set reverse video mode

Return Value None

Remarks This routine determines the display mode of the LCD.

 107

 Chapter 2 Mobile-Specific Function Library

GetBklitLevel 8200,8400,8700

Purpose Get LCD backlight level.

Syntax Unsigned char GetBklitLevel (void);

Example Unsigned char level= GetBklitLevel();

Return Value Return value

0x01 BKLIT_VERY_LO Backlight with very low luminosity

0x02 BKLIT_LO Backlight with low luminosity

0x03 BKLIT_MED Backlight with medium luminosity

0x04 BKLIT_HI Backlight with high luminosity

0x11 BKLIT_SHADE _VL SHADE effect on and Backlight with very
low luminosity

0x12 BKLIT_SHADE _LO SHADE effect on and Backlight with low
luminosity

0x13 BKLIT_SHADE _MED SHADE effect on and Backlight with
medium luminosity

0x14 BKLIT_SHADE _HI SHADE effect on and Backlight with high
luminosity

See Also lcd_backlit, SeBklitLevel

SetBklitLevel 8200,8400,8700

Purpose Set LCD backlight level.

Syntax void SetBklitLevel (unsigned char level);

Example SetBklitLevel(BKLIT_SHADE_LO);

Lcd_bklit(BKLIT_ON);

Parameters unsigned char level

0x01 BKLIT_VERY_LO Backlight with very low luminosity

0x02 BKLIT_LO Backlight with low luminosity

0x03 BKLIT_MED Backlight with medium luminosity

0x04 BKLIT_HI Backlight with high luminosity

0x11 BKLIT_SHADE_VL SHADE effect on and Backlight with very
low luminosity

0x12 BKLIT_SHADE_LO SHADE effect on and Backlight with low
luminosity

0x13 BKLIT_SHADE_MED SHADE effect on and Backlight with
medium luminosity

0x14 BKLIT_SHADE_HI SHADE effect on and Backlight with high
luminosity

Return Value None

Remarks When the shade effect is on, backlight fades in or fades out to the designated
level.

108

CipherLab C Programming Part I

See Also lcd_backlit, SeBklitLevel

SetAutoBklit 8200,8400,8700

Purpose To set automatic backlight. Backlight turns on when any key is pressed.

Syntax void SetAutoBklit(int mode);

Example SetAutoBklit(1);

Parameters int mode

0 Disable (default)

1 Enable

Return Value None

Remarks The system global variable BKLIT_TIMEOUT can be used to specify the
backlight duration in units of second.

See Also lcd_backlit, GetBklitLevel

lcd_backlit

Purpose To set the LCD backlight.

Syntax void lcd_backlit (int state);

 109

 Chapter 2 Mobile-Specific Function Library

Parameters For 8000/8300 Series, the parameter state can be one of the following:

int state

0 BKLIT_OFF Backlight off

1 BKLIT_LO Backlight on

For 8200 Series, the parameter state can be one of the following:

int state

0 BKLIT_OFF Backlight off

1 BKLIT_ON Backlight on

For 8400 Series, the parameter state can be one of the following:

int state

0x0000 BKLIT_OFF Backlight off

0x0001 BKLIT_VERY_LO Backlight with very low luminosity

0x0002 BKLIT_LO Backlight with low luminosity

0x0003 BKLIT_MED Backlight with medium luminosity

0x0004 BKLIT_HI Backlight with high luminosity

0x0010 BKLIT_SHADE_OFF SHADE effect on and Backlight off

0x0011 BKLIT_SHADE_VL SHADE effect on and Backlight with very
low luminosity

0x0012 BKLIT_SHADE_LO SHADE effect on and Backlight with low
luminosity

0x0013 BKLIT_SHADE_MED SHADE effect on and Backlight with
medium luminosity

0x0014 BKLIT_SHADE_HI SHADE effect on and Backlight with high
luminosity

 For 8500/8700 Series, the parameter state can be one of the following:

int state

0 BKLIT_OFF Backlight off

1 BKLIT_VERY_LO Backlight with very low luminosity

2 BKLIT_LO Backlight with low luminosity

3 BKLIT_MED Backlight with medium luminosity

4 BKLIT_HI Backlight with high luminosity

Example lcd_backlit(1); // turn on LCD backlight, low density

Return Value None

Remarks This routine toggles the LCD backlight depending on the value of state.

 The system global variable BKLIT_TIMEOUT can be used to specify the
backlight duration in units of second. However, if the value of
BKLIT_TIMEOUT is zero, it means that the backlight will be on until it is
either turned off manually or its state is set to BKLIT_OFF.

See Also BKLIT_TIMEOUT, SetBklitControl

110

CipherLab C Programming Part I

SetBklitControl 8200, 8400, 8500, 8700

Purpose To provide the use of combination keys to control the LCD backlight.

Syntax void SetBklitControl (int mode);

Parameters For 8200/8400 Series, the parameter can be one of the following:

int mode
(the backlight key is for 29-key and for 39-key)

0 Key combination [Backlight] + [↑]/[↓] disabled

1 Key combination [Backlight] + [↑]/[↓] enabled

2 Key combination [Backlight] + [↑]/[↓] disabled

+ Backlight key as normal key

3 Key combination [Backlight] + [↑]/[↓] enabled

+ Backlight key as normal key

For 8500/8700 Series, the parameter can be one of the following:

int mode

0 Key combination FN + [←]/[→] disabled

1 Key combination FN + [←]/[→] enabled

Example SetBklitControl(0);

// disable the key combination for Backlight Control

Return Value None

Remarks This routine determines whether the LCD backlight can be adjusted by pressing
the combination keys.

 When enabled on 8200/8400 Series, press [Backlight] + [↑] simultaneously
for higher luminosity and [Backlight] + [↓] simultaneously for lower
luminosity.

 When disabled on 8200/8400 Series, the key values KEY_BUP or
KEY_BDOWN will be stored in keyboard buffer.

 For 8200/8400, Backlight key as normal key — The key is treated as a
normal key.

 When enabled on 8500/8700 Series, press FN + [→] simultaneously for
higher luminosity and FN + [←] simultaneously for lower luminosity.

 When disabled on 8500/8700 Series, the key values KEY_FLEFT or
KEY_FRIGHT will be stored in keyboard buffer.

See Also lcd_backlit

 111

 Chapter 2 Mobile-Specific Function Library

SetContrastControl

Purpose To provide the use of combination keys to control the LCD contrast.

Syntax void SetContrastControl (int mode);

Parameters For 8000/8300/8500/8700 Series, the parameter can be one of the following:

int mode

0 Key combination FN + [↑]/[↓] disabled
(For 8500/8700 44-TE key, FN + [3]/[6] disabled)

1 Key combination FN + [↑]/[↓] enabled

(For 8500/8700 44-TE key, FN + [3]/[6] enabled)

For 8200/8400 Series, the parameter can be one of the following:

int mode
(the backlight key is for 29-key and for 39-key)

0 Key combination [Backlight] + [←]/[→] disabled
(For 39-key, also FN + [0]/[‧] disabled)

1 Key combination [Backlight] + [←]/[→] enabled

(For 39-key, also FN + [0]/[‧] enabled)

Example SetContrastControl(0);

// disable the key combination for Contrast Control

Return Value None

Remarks This routine determines whether the LCD contrast can be adjusted by pressing
the combination keys.

 When enabled on 8000/8300/8500/8700 Series, press FN + [↑]
simultaneously for higher contrast and FN + [↓] simultaneously for lower
contrast.

 When disabled on 8000/8300/8500/8700 Series, the key values KEY_FUP
or KEY_FDOWN will be stored in keyboard buffer.

 When enabled on 8200/8400 Series, press [Backlight] + [→]
simultaneously for higher contrast and [Backlight] + [←] simultaneously
for lower contrast.

 When disabled on 8200/8400 Series, the key values KEY_BLEFT or
KEY_BRIGHT will be stored in keyboard buffer.

See Also DecContrast, GetContrast, IncContrast, SetContrast

112

CipherLab C Programming Part I

2.11.2 CURSOR

GetCursor

Purpose To check whether the cursor indication on the LCD is visible (On) or not (Off).

Syntax int GetCursor (void);

Example if (GetCursor() == 0)

puts(“Cursor Off”);

Return Value If visible, it returns 1.

Otherwise, it returns 0.

SetCursor

Purpose To determine whether the cursor indication on the LCD is visible (On) or not
(Off).

Syntax void SetCursor (int cursor);

Parameters int cursor

0 CURSOR_OFF Hide cursor (Off)

1 CURSOR_ON Display cursor (On)

Example SetCursor(0); // turn off the cursor indication

Return Value None

gotoxy

Purpose To move the cursor to a new position.

Syntax void gotoxy (int x_position, int y_position);

Parameters int x_position

X coordinate of the new cursor position desired.

int y_position

Y coordinate of the new cursor position desired.

Example gotoxy(10, 0)

 // move the cursor to the 11th column of the first line

Return Value None

Remarks This routine moves the cursor to a new position whose (X, Y) coordinates are
specified in the argument x_position and y_position.

Depending on the following elements, the maximum values for coordinates are
limited:

 The printing of characters in the icon area, which is determined by
ICON_ZONE().

 The size of LCD.

 The font file in use.

For 8500/8700 Series, the y coordinate cannot be over 18 with font size 6x8
and ICON_ZONE(0) is given.

See Also wherexy

 113

 Chapter 2 Mobile-Specific Function Library

wherex

Purpose To get the X coordinate of the current cursor (column position).

Syntax int wherex (void);

Example x_position = wherex();

Return Value It returns the X coordinate.

wherexy

Purpose To get the (X, Y) coordinates of the current cursor.

Syntax void wherexy (int *column, int *row);

Parameters int *column

Pointer to a buffer where the X coordinate is stored.

int *row

Pointer to a buffer where the Y coordinate is stored.

Example wherexy(&x_position, &y_position);

Return Value None

Remarks This routine copies the values of column and row for the current cursor position
to the variables whose addresses are specified in the arguments column and
row.

See Also gotoxy, wherex, wherey

wherey

Purpose To get the Y coordinate of the current cursor (row position).

Syntax int wherey (void);

Example y_position = wherey();

Return Value It returns the Y coordinate.

114

CipherLab C Programming Part I

2.11.3 DISPLAY

fill_rect

Purpose To fill a rectangular area on the LCD.

Syntax void fill_rect (int left, int top, int width, int height);

Parameters int left, top

(X, Y) coordinates of the upper left corner of the rectangle.

int width

Width of the rectangle to be filled, in dots.

int height

Height of the rectangle to be filled, in dots.

Example fill_rect(12, 8, 40, 8);

Return Value None

Remarks This routine fills a rectangular area on the LCD whose top left position and size
are specified by left, top, width, and height.

 The cursor position is not affected after the operation.

See Also clr_rect

 115

 Chapter 2 Mobile-Specific Function Library

ICON_ZONE

Purpose To enable or disable the printing of characters in the icon area.

Syntax void ICON_ZONE (int mode) ;

Parameters int mode

0 ICON_ZONE_DISABLE Show status icons by default (= printing
disabled)

1 ICON_ZONE_ENABLE Show characters (= printing enabled)

Example ICON_ZONE(1);

Return Value None

Remarks The icon zone refers to an area on the LCD that is reserved for showing status
icon, such as the battery icon, alpha icon, etc.

 By default, the icon zone cannot show characters and is accessed by
graphic commands only.

8000 100x64 dots The icon zone occupies the right-most 4x64 dots.
Yet, 4 pixels’ width cannot hold one character.
Therefore, even when ICON_ZONE is enabled, the
display remains to show up to 8 lines * 16 characters
for FONT_6X8, or 4 lines * 12 characters for
FONT_8X16.

8200,
8400

160x160 dots The icon zone occupies the bottom line, which takes
160x16 dots. When ICON_ZONE is enabled, the
display can show up to 20 lines * 26 characters for
FONT_6X8, or 10 lines * 20 characters for
FONT_8X16.

8300 128x64 dots The icon zone occupies the right-most 8x64 dots.
When ICON_ZONE is enabled, the display can show
up to 8 lines * 21 characters for FONT_6X8, or 4
lines * 16 characters for FONT_8X16.

8500,
8700

160x160 dots The icon zone occupies the bottom line, which takes
160x8 dots for FONT_6X8 or 160x16 dots for
FONT_8X16. When ICON_ZONE is enabled, the
display can show up to 20 lines * 26 characters for
FONT_6X8, or 10 lines * 20 characters for
FONT_8X16.

For any of the above displays, when ICON_ZONE is enabled, the entire screen
will be erased after calling clr_scr(). Note that the system may still show the
status icons in this icon area, even though ICON_ZONE is enabled. This is
because these status icons are constantly maintained by the system, and they
may override the printing of characters from time to time.

116

CipherLab C Programming Part I

printf

Purpose To write character strings and values of C variables in a specified format to the
LCD.

Syntax int printf (char *format, var...);

Parameters char *format

Character string that describes the format to be used.

Var...

Any variable whose value is being printed on the LCD.

Example pritnf(“ID:%s”, id_buffer);

Return Value It returns the character count that sent to the LCD.

Remarks This routine accepts any variable and prints its value to the LCD. The value of
each variable is formatted according to the codes embedded in the format
specification format.

To print values of C variables, a format specification must be embedded in
format for each variable to be printed. The format specification for each
variable has the following form:

%[flags][width].[precision][size][type]

Field Explanation

%
(required)

Indicates the beginning of a format specification. Use %% to print
a percentage sign.

Flags
(optional)

One of more of the ‘-‘, ‘+’, ‘#’ characters or a blank space
specifies justification, and the appearance of plus/minus signs in
the values printed.
- Left justify output value. The default is right justification.
+ If the output value is a numerical one, print a ‘+’ or

‘-‘ character according to the sign of the value. A
‘-‘ character is always printed for a negative value no
matter this flag is specified or not.

Blank Positive numerical values are prefixed with blank spaces.
This flag is ignored if the + flag also appears.

When used in printing variables of type o, x, or X (see
below), non-zero output values are prefixed with 0, 0x,
or 0X respectively.

Width
(optional)

A number that indicates how many characters, at maximum,
must be used to print the value.

Precision
(optional)

A number that indicates how many characters, at maximum, can
be used to print the value. When printing integer variables, this is
the minimum number of digits used.

Size
(optional)

A character that modifies the type field which comes next. One of
the characters ‘h’, ‘l’, and ‘L’ can appear in this field to
differentiate between short and long integers. ‘h’ is for short
integers, and ‘l’ or ‘L’ for long integers.

 117

 Chapter 2 Mobile-Specific Function Library

 Type
(required)

A letter that indicates the type of variable being printed:

c

d

i

o

u

x

X

s

Single character

signed decimal integer

signed decimal integer

Octal digits without sign

unsigned decimal integer

Hexadecimal digits using lower case letter

Hexadecimal digits using upper case letter

A null terminated character string

118

CipherLab C Programming Part I

putchar

Purpose To display a character on the LCD.

Syntax int putchar (int c);

Parameters int c

The character being sent to the LCD.

Example putchar(‘A’);

Return Value It always returns 1.

Remarks This routine sends a character specified in the argument c to the LCD at the
current cursor position. The cursor is moved accordingly.

puts

Purpose To display a string on the LCD.

Syntax int puts (char *string);

Parameters char *string

The string being sent to the LCD.

Example puts(“Password : ”);

Return Value It returns the character count of the string.

Remarks This routine sends a string, whose address is specified in the argument string,
to the LCD at the current cursor position. The cursor is moved accordingly as
each character of string is sent to the LCD. The operation continues until a
terminating null character is encountered.

 119

 Chapter 2 Mobile-Specific Function Library

WaitHourglass

Purpose To show a moving hourglass on the LCD.

Syntax void WaitHourglass (int UppLeftX, int UppLeftY, int type);

Parameters int UppLeftX, UppLeftY

(X, Y) coordinates of the upper left corner of the hourglass.

int type

1 HOURGLASS_24x23 24X23 pixels

2 HOURGLASS_8x8 8x8 pixels

Example while (IsRunning)

{...

WaitHourglass(68, 68, HOURGLASS_24x23);

 // show the 24x23 hourglass during the loop

...}

Return Value None

Remarks This routine has to be called constantly to maintain its functionality.

 Five different patterns of an hourglass type take turns to show on the LCD
at certain intervals, indicating the passage of time.

 The time factor is decided through programming but no less than two
seconds.

See Also clr_rect

120

CipherLab C Programming Part I

2.11.4 CLEAR

clr_eol

Purpose To clear from where the cursor is to the end of the line, and then move the
cursor to its original position.

Syntax void clr_eol (void);

Example clr_eol();

Return Value None

See Also clr_scr

clr_icon

Purpose To clear the icon zone on the LCD.

Syntax void clr_icon (void);

Example clr_icon();

Return Value None

Remarks The icon zone is an unprintable area reserved for showing some status icons,
such as the battery icon, antenna, system time, etc.

  Programmers can show custom icons in this area by using the show_image
function.

 When calling clr_scr() to clear the screen, this icon zone won’t be cleared.
Therefore, if you need to erase the icon zone, you have to call clr_icon().

See Also clr_scr

clr_rect

Purpose To clear a rectangular area on the LCD.

Syntax void clr_rect (int left, int top, int width, int height);

Parameters int left, top

(X, Y) coordinates of the upper left corner of the rectangle.

int width

Width of the rectangle to be cleared, in dots.

int height

Height of the rectangle to be cleared, in dots.

Example clr_rect(12, 8, 40, 8);

Return Value None

Remarks This routine clears a rectangular area on the LCD whose top left position and
size are specified by left, top, width, and height.

 The cursor position is not affected after the operation.

See Also fill_rect

 121

 Chapter 2 Mobile-Specific Function Library

clr_scr

Purpose To clear everything on the LCD.

Syntax void clr_scr (void);

Example clr_scr();

Return Value None

Remarks This routine clears contents of the current screen and places the cursor at the
first column of the first line — (0, 0).

See Also clr_eol, clr_icon, clr_rect

122

CipherLab C Programming Part I

2.11.5 IMAGE

The show_image() function can be used to display images on the LCD. The user needs
to allocate an unsigned char array to store the bitmap data of the image. This array
begins with the top row of pixels. Each row begins with the left-most pixels. Each bit of
the bitmap represents a single pixel of the image. If the bit is set to 1, the pixel is
marked, and if it is 0, the pixel is unmarked.

The 1st pixel in each row is represented by the least significant bit of the 1st byte in each
row. If the image is wider than 8 pixels, the 9th pixel in each row is represented by the
least significant bit of the 2nd byte in each row.

The following is an example to show our company logo, and the static unsigned char
array is used for storing its bitmap data.

static unsigned char CipherLab_logo [] = {

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0xf0, 0xff, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x10, 0x00, 0x08, 0x00, 0x00,
0x00, 0x00, 0xfc, 0xff, 0x0b, 0x00, 0x00, 0x00, 0x00, 0xfc, 0xff, 0x0b, 0x00, 0x00, 0x00,
0x00, 0xfc, 0xff, 0x0b, 0x80, 0x07, 0x00, 0x00, 0xf4, 0xff, 0x0b, 0xc0, 0xac, 0x93, 0x77,
0xf4, 0x1d, 0x0b, 0x60, 0xa0, 0x94, 0x90, 0xf4, 0xda, 0x0a, 0x20, 0xa0, 0x94, 0x90, 0xf4,
0xda, 0x0a, 0x20, 0xa0, 0xf3, 0x77, 0x74, 0x17, 0x0b, 0x60, 0xa8, 0x90, 0x30, 0x74, 0xd0,
0x0a, 0xc0, 0xac, 0x90, 0x50, 0x74, 0xd7, 0x0a, 0x80, 0xa7, 0x90, 0x97, 0x04, 0x17, 0x0b,
0x00, 0x00, 0x00, 0x00, 0xfc, 0xff, 0x0f, 0x00, 0x00, 0x00, 0x00, 0xfc, 0xff, 0x03, 0x00,
0x00, 0x00, 0x00, 0xfc, 0xff, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00};

 123

 Chapter 2 Mobile-Specific Function Library

get_image

Purpose To read a bitmap pattern from a rectangular area on the LCD.

Syntax void get_image (int left, int top, int width, int height, unsigned char
*pat);

Parameters int left, top

(X, Y) coordinates of the upper left corner of the rectangle.

int width

Width of the rectangle, in dots.

int height

Height of the rectangle, in dots.

unsigned char *pat

Pointer to a buffer where bitmap data will be copied to.

Example get_image(12, 32, 60, 16, buf);

Return Value None

Remarks This routine copies the bitmap pattern of a rectangular area on the LCD (whose
top left position and size are specified by left, top, width, and height) to a
buffer (pat).

 The cursor position is not affected after the operation.

show_image

Purpose To put a bitmap pattern to a rectangular area on the LCD.

Syntax void show_image (int left, int top, int width, int height, unsigned char
*pat);

Parameters int left, top

(X, Y) coordinates of the upper left corner of the rectangle.

int width

Width of the rectangle, in dots.

int height

Height of the rectangle, in dots.

unsigned char *pat

Pointer to a buffer where bitmap data is kept for displaying on the LCD.

Example show_image(35, 5, 52, 24, CipherLab_logo[]);

Return Value None

Remarks This routine displays the bitmap pattern from a buffer (pat) to a rectangular
area on the LCD (whose top left position and size are specified by left, top,
width, and height).

 The cursor position is not affected after the operation.

124

CipherLab C Programming Part I

2.11.6 GRAPHICS

A monochrome graphic has three factors as listed in the table.

Key Factors Parameters Functions

Video Mode VIDEO_REVERSE

VIDEO_NORMAL

1

0

See SetVideoMode()

Pixel State DOT_MARK

DOT_CLEAR

DOT_REVERSE

1

0

-1

See circle(), line(), putpixel() and rectangle()

Shape State SHAPE_FILL

SHAPE_NORMAL

1

0

See circle(), rectangle()

Illustrative examples are given below.

Shape State Pixel State

 DOT_MARK DOT_CLEAR DOT_REVERSE

SHAPE_FILL

SHAPE_NORMAL

 125

 Chapter 2 Mobile-Specific Function Library

circle

Purpose To draw a circle on the LCD.

Syntax void circle (int x, int y, int r, int type, int mode) ;

Parameters int x, y

(X, Y) coordinates of the center of a circle.

int r

Radius of a circle.

int type

0 SHAPE_NORMAL Hollow object

1 SHAPE_FILL Solid object

int mode

-1 DOT_REVERSE Dot in Reverse mode

0 DOT_CLEAR Dot being cleared

1 DOT_MARK Dot being marked

Example circle(80, 120, 8, SHAPE_FILL, DOT_MARK);

// show a solid black circle centered at the position of (80,120) with
radius of 8 pixels

Return Value None

See Also line, rectangle

line

Purpose To draw a line on the LCD.

Syntax void line (int X1, int Y1, int X2, int Y2, int mode) ;

Parameters int X1, Y1

(X, Y) coordinates of the starting point of a line.

int X2, Y2

(X, Y) coordinates of the ending point of a line.

int mode

-1 DOT_REVERSE Dot in Reverse mode

0 DOT_CLEAR Dot being cleared

1 DOT_MARK Dot being marked

Example line(10, 10, 120, 10, DOT_MARK); // draw a horizontal line

line(80, 120, 10, 10, DOT_MARK); // draw an oblique line

Return Value None

See Also circle, rectangle

126

CipherLab C Programming Part I

putpixel

Purpose To mark a pixel (or draw a dot) on the LCD.

Syntax void putpixel (int pos_x, int pos_y, int mode) ;

Parameters int pos_x, pos_y

(X, Y) coordinates of a pixel.

int mode

-1 DOT_REVERSE Dot in Reverse mode

0 DOT_CLEAR Dot being cleared

1 DOT_MARK Dot being marked

Example putpixel(80, 120, DOT_REVERSE);

 // mark or clear the dot at (80,120) depending on the pixel status

Return Value None

rectangle

Purpose To draw a rectangle on the LCD.

Syntax void rectangle (int X1, int Y1, int X2, int Y2, int type, int mode) ;

Parameters int X1, Y1

(X, Y) coordinates of the starting point of a diagonal.

 int X2, Y2

(X, Y) coordinates of the ending point of a diagonal.

int type

0 SHAPE_NORMAL Hollow object

1 SHAPE_FILL Solid object

int mode

-1 DOT_REVERSE Dot in Reverse mode

0 DOT_CLEAR Dot being cleared

1 DOT_MARK Dot being marked

Example rectangle(10, 20, 80, 100, SHAPE_FILL, DOT_MARK);

 // show a solid black rectangle

Return Value None

See Also circle, line

 127

 Chapter 2 Mobile-Specific Function Library

2.12 TOUCH SCREEN

For 8500/8700 Series, the liquid crystal display (LCD) is also a touch screen when it is
initialized by InitTouchScreen().

 Signature Capture

Use the stylus to write anything directly on a specific area of the LCD, which is
defined by SignatureCapture(). Then, the signature can be captured by
GetScreenItem().

 Touchable Items

Graphic items can be designed to simulate a key operation when being touched, e.g.
a calculator. The information of “graphic items” (buttons), including position and size,
has to be defined in advance through the data structure ItemProperty.

Patterns of the graphic items can be designed and displayed on the LCD by
show_image(). Then, these items can be utilized and detected by
GetScreenItem().

If the display mode for a selected item is set to ITEM_REVERSE, the item will be
displayed in a reverse color once it is touched.

On the contrary, if it is set to ITEM_NORMAL, there will be no changes happening to
the item once it is touched.

2.12.1 ITEMPROPERTY STRUCTURE

typedef struct {

int UppLeftX;

int UppLeftY;

int SizeX;

int SizeY;

} ItemProperty;

The data structure is defined as shown below.

Item Description

int UppLeftX X coordinate of the upper left corner of the item

int UppLeftY Y coordinate of the upper left corner of the item

int SizeX Width of the item, in dots

int SizeY Height of the item, in dots

128

CipherLab C Programming Part I

GetPoint 8500, 8700

Purpose To get the position of the starting and ending points for any movement on the
touch screen.

Syntax int GetPoint (int *DownX, int *DownY, int *UpX, int *UpY);

Parameters int DownX, DownY

(X, Y) coordinates of the starting point.

int UpX, UpY

(X, Y) coordinates of the ending point.

Example val = GetPoint(&dX, &dY, &uX, &uY);

Return Value If successful, it returns 1.

Otherwise, it returns 0 to indicate there is no touch on the screen.

See Also circle, rectangle

GetScreenItem 8500, 8700

Purpose To detect and return an item number when an item is selected, or detect and
show any writing on the signature capture area.

Syntax int GetScreenItem (ItemProperty *Item, int TotalItems, int mode);

Parameters ItemProperty *Item

The list of size information of items.

int TotalItems

The amount of items.

int mode

0 ITEM_NORMAL A touched item will be displayed normally.

1 ITEM_REVERSE A touched item will be displayed in a reverse color.

Example const ItemProperty

Buttonlist[3] = {{8, 8, 24, 16},{38, 8, 24, 16},{68, 8, 24, 16}};

while (event)

{

...

val = GetScreenItem((void*)Buttonlist, 3, ITEM_REVERSE);

}

Return Value If successful, it returns the index (starting from 0) of a selected item. (No
return value for signature capture.)

Otherwise, it returns -1 to indicate there is no item chosen, or no signature is
captured.

Remarks Before calling this routine, InitTouchScreen() must be called. This routine has
to be called constantly to maintain its functionality.

 ItemProperty is a data structure, consisting of the (X, Y) coordinates of the
upper left corner, width and height of one item.

See Also InitTouchScreen, show_image, SignatureCapture

 129

 Chapter 2 Mobile-Specific Function Library

GetTouchScreenState 8500, 8700

Purpose To get the current state of touch screen.

Syntax int GetTouchScreenState (void);

Example val = GetTouchScreenState();

Return Value If enabled (initialized), it returns 1.

Otherwise, it returns 0.

See Also HaltTouchScreen, InitTouchScreen

HaltTouchScreen 8500, 8700

Purpose To stop the touch screen from operating.

Syntax void HaltTouchScreen (void);

Example HaltTouchScreen();

Return Value None

Remarks To restart the touch screen function, InitTouchScreen() must be called. The
touch screen won’t work until it is initialized.

See Also InitTouchScreen

InitTouchScreen 8500, 8700

Purpose To initialize the touch screen.

Syntax void InitTouchScreen (void);

Example InitTouchScreen();

Return Value None

See Also HaltTouchScreen

SignatureCapture 8500, 8700

Purpose To define a signature capture area on the touch screen. User may use the
stylus to freely write or draw on this area.

Syntax void SignatureCapture (int UppLeftX, int UppLeftY, int LowRightX, int
LowRightY)

Parameters int UppLeftX, UppLeftY

(X, Y) coordinates of the upper left corner of the area.

int LowRightX, LowRightY

(X, Y) coordinates of the lower right corner of the area.

Example SignatureCapture(8, 8, 150, 100);

Return Value None

See Also GetScreenItem

130

CipherLab C Programming Part I

2.12.2 EXAMPLE

Touch Screen Test

Touch Screen with putch()
main()

{ :

OSTaskCreate(TouchScreenTask…);

 :

while (1)

{ getchar();

 :

}

}

TouchScreenTask()

{ :

InitTouchScreen();

SignatureCapture(…);

while (1)

{ c = GetScreenItem(…);

 :

 putch(c);

}

}

 131

 Chapter 2 Mobile-Specific Function Library

2.13 FONTS

2.13.1 FONT SIZE

Basically, the mobile computer allows two font size options for the system font: 6x8 and
8x16. These options are also applicable to other alphanumerical font files (for single byte
languages), such as the multi-language font file and Hebrew/Nordic/Polish/Russian font
files.

 The LCD will show 6x8 alphanumeric characters by default.

In addition to the system font, the mobile computer supports a number of font files as
shown below. Available font size options depend on which font file is downloaded to the
mobile computer.

Font Files Custom Font Size SetFont Options

Single-byte System font (default) N/A FONT_6X8, FONT_8X16

Multi-language font file N/A FONT_6X8, FONT_8X16

Others: He, Nd, Po, Ru N/A FONT_6X8, FONT_8X16

Double-byte Tc, Sc, Jp, Kr 16X16 FONT_6X8, FONT_8X16

Tc12, Sc12, Jp12, Kr12 12X12 FONT_6X12, FONT_12X12

Tc20, Sc20, Jp20, Kr20 20X20 FONT_10X20

2.13.2 DISPLAY CAPABILITY

Varying by the screen size and the font size of alphanumeric characters, the display
capability can be viewed by lines and characters (per line) as follows.

Screen Size (dots) Alphanumerical Font Display Capability Icon Zone

8000 100 x 64

Font Size 6x8 dots 16 (char) * 8 (lines) Last column (4x64)

Font Size 8x16 dots 12 (char) * 4 (lines) Last column (4x64)

8300 128 x 64 Font Size 6x8 dots 20 (char) * 8 (lines) Last column (8x64)

Font Size 8x16 dots 15 (char) * 4 (lines) Last column (8x64)

8200, 8400 160 x 160 Font Size 6x8 dots 26 (char) * 18 (lines) Last row (160x16)

Font Size 8x16 dots 20 (char) * 9 (lines) Last row (160x16)

8500, 8700 160 x 160 Font Size 6x8 dots 26 (char) * 19 (lines) Last row (160x8)

Font Size 8x16 dots 20 (char) * 9 (lines) Last row (160x16)

Note: For 8200/8400/8500/8700, it can display up to 20 (or 10) lines when the icon
area is not available for displaying the battery icon, etc. (= ICON_ZONE enabled)

132

CipherLab C Programming Part I

2.13.3 MULTI-LANGUAGE FONT

The multi-language font file includes English (default), French, Hebrew, Latin, Nordic,
Portuguese, Turkish, Russian, Polish, Slavic, Slovak, etc. To display in any of these
languages except English, you need to call SetLanguage() to specify the language by
region.

2.13.4 SPECIAL FONTS

Fonts with file name specifying Tc12 (Traditional Chinese), Sc12 (Simplified Chinese),
Jp12 (Japanese), or Kr12 (Korean) are referred to as the special font files. This is
because their font size for alphanumeric characters must be determined by SetFont(),
either 6x12 or 12x12. Otherwise, the characters cannot be displayed properly.

CheckFont

Purpose To check which font file resides in the flash memory.

Syntax int CheckFont (void);

Example n = CheckFont();

Return Value Return Value

0x00

0x01

0x02

0x03

0x04

0x05

0x06

0x07

0x08

0x09

0x0a

0x0b

0x0c

0x0d

0x0e

0x10

0x11

0x12

0x13

 System font only

TC (Traditional Chinese)

Reserved

SC (Simplified Chinese)

KR (Korean)

JP (Japanese)

HE (Hebrew)

PO (Polish)

RU (Russian)

TC12 (Traditional Chinese)

Reserved

SC12 (Simplified Chinese)

JP12 (Japanese)

KR12 (Korean)

TC20 (Traditional Chinese)

MULTI (Multi-language)

SC20 (Simplified Chinese)

KR20 (Korean)

JP20 (Japanese)

16x16, Big5 code

16x16, GB code

16x16

12x12, Big5 code

12x12, GB code

12x12

12x12

20x20, Big5 code

20x20, GB code

See Also FontVersion, SetLanguage

 133

 Chapter 2 Mobile-Specific Function Library

GetFont

Purpose To get the current font size information.

Syntax int GetFont (void);

Example if (GetFont() == FONT_8X16)

puts(“Font : 8X16”);

Return Value Return Value

FONT_6X8

FONT_8X16

FONT_6X12

FONT_12X12

FONT_12X16

FONT_10X20

6x8 graphic dots per character

8x16 graphic dots per character

6x12 graphic dots per character

12x12 graphic dots per character

12x16 graphic dots per character

10x20 graphic dots per character

134

CipherLab C Programming Part I

SetFont

Purpose To select a font size for the LCD to display alphanumeric characters properly.

Syntax void SetFont (int font);

Parameters int font

FONT_6X8

FONT_8X16

FONT_6X12

FONT_12X12

FONT_12X16

FONT_10X20

6x8 graphic dots per character

8x16 graphic dots per character

6x12 graphic dots per character

12x12 graphic dots per character

12x16 graphic dots per character

10x20 graphic dots per character

Example SetFont(FONT_8X16);

Return Value None

Remarks Depending on the current font and its available font size options, this routine
specifies which font size is to be used following this call.

 Single-byte Characters:
For single-byte characters (system, ultilanguage, etc.), simply assign
either FONT6X8 or FONT_8X16.

 16x16 Double-byte Characters:
You may assign FONT_6X8 or FONT_8X16 to display alphanumeric
characters.

 12x12 Double-byte Characters:
If you assign FONT_6X12, the font size for single byte characters will be
6x12, while it will still take 12x12 for double-byte characters (Tc12, Sc12,
Jp12, Kr12). It thus provides flexibility in displaying alphanumeric.
However, for Japanese Katakana, you have to assign FONT_12X12;
otherwise, the cursor position will be misplaced.

 20x20 Double-byte Characters:
If you assign FONT_10X20, the font size for single byte characters will be
10x20, while it will still take 20x20 for double-byte characters (Tc20, Sc20,
Jp20, Kr20). It thus provides flexibility in displaying alphanumeric.

See Also SetLanguage

 135

 Chapter 2 Mobile-Specific Function Library

SetLanguage

Purpose To select which language is to be used from the multi-language font file.

Syntax void SetLanguage (int setting);

Parameters int setting

0x10

0x11

0x12

0x13

0x14

0x15

0x16

0x17

0x18

0x19

0x1a

0x1b

0x1c

0x1d

0x1e

0x1f

0x20

0x21

English_437

French_863

Hebrew_862

Latin_850

Nordic_865

Portugal_860

CP_1251

CP_852

CP_1250

Turkish_857

Latin_II

WIN1250

ISO_28592

IBM_LATIN_II

Greek_737

CP_1252

CP_1253

CP_1254

English (default)

Canadian French

Hebrew

Multilingual Latin I

Nordic

Portuguese

Cyrillic (Russian)

Latin II (Slavic)

Central European, Latin II (Polish)

Turkish

Latin II (Slovak)

Windows 1250

ISO-28592 (Latin 2)/ISO 8859-2

IBM-LATIN II

Greek

Latin I

Greek

Turkish (for 8200/8400/8700)

Example SetLanguage(0x14); // choose the Nodic font

Return Value None

Remarks If the multi-language font file has been downloaded to the mobile computer,
then this routine can be used to specify which language font is to be used by
the system. Later, you can always change this setting in System Menu.

See Also CheckFont, SetFont

136

CipherLab C Programming Part I

2.13.5 FONT FILES

8000, 8300 Font File Font Size

Font-Hebrew.shx Font size: 6x8 or 8x16

Font-Japanese.shx Font size: 16x16 (4 lines)

Font-Japanese12.shx Font size: 6x12 or 12x12 (5 lines)

Font-Korean.shx Font size: 16x16 (4 lines)

Font-Korean12.shx Font size: 6x12 or 12x12 (5 lines)

Font-Nordic.shx Font size: 6x8 or 8x16

Font-Polish.shx Font size: 6x8 or 8x16

Font-Russian.shx Font size: 6x8 or 8x16

Font-SimplifiedChinese.shx Font size: 16x16 (4 lines)

Font-SimplifiedChinese12.shx Font size: 6x12 or 12x12 (5 lines)

Font-TraditionalChinese.shx Font size: 16x16 (4 lines)

Font-TraditionalChinese12.shx Font size: 6x12 or 12x12 (5 lines)

Font-Multi-Language.shx Font size: 6x8 or 8x16

Note: The above font files have been recompiled to support 2 MB flash memory and
renamed accordingly.

8200, 8400, 8700 Font File Font Size

Font8x00-Hebrew.shx Font size: 6x8 or 8x16

Font8x00-Japanese.shx Font size: 16x16 (9 lines)

Font8x00-Japanese12.shx Font size: 6x12 or 12x12 (12 lines)

Font8x00-Japanese20.shx Font size: 10x20 or 20x20 (7 lines)

Font8x00-Korean.shx Font size: 16x16 (9 lines)

Font8x00-Korean20.shx Font size: 10x20 or 20x20 (7 lines)

Font8x00-Nordic.shx Font size: 6x8 or 8x16

Font8x00-Polish.shx Font size: 6x8 or 8x16

Font8x00-Russian.shx Font size: 6x8 or 8x16

Font8x00-SimplifiedChinese.shx Font size: 16x16 (9 lines)

Font8x00-SimplifiedChinese12.shx Font size: 6x12 or 12x12 (12 lines)

Font8x00-SimplifiedChinese20.shx Font size: 10x20 or 20x20 (7 lines)

Font8x00-TraditionalChinese.shx Font size: 16x16 (9 lines)

Font8x00-TraditionalChinese12.shx Font size: 6x12 or 12x12 (12 lines)

Font8x00-TraditionalChinese20.shx Font size: 10x20 or 20x20 (7 lines)

Font8x00-Multi-Language.shx Font size: 6x8, 8x16 or 12x16 (9 lines)

 137

 Chapter 2 Mobile-Specific Function Library

8500 Font File Font Size

Font8500-Japanese.shx Font size: 16x16 (9 lines)

Font8500-Korean.shx Font size: 16x16 (9 lines)

Font8500-SimplifiedChinese.shx Font size: 16x16 (9 lines)

Font8500-SimplifiedChinese 12.shx Font size: 6x12 or 12x12 (12 lines)

Font8500-TraditionalChinese.shx Font size: 16x16 (9 lines)

Font8500-TraditionalChinese 12.shx Font size: 6x12 or 12x12 (12 lines)

Font8500-Multi-Language.shx Font size: 6x8 or 8x16

138

CipherLab C Programming Part I

2.14 MEMORY

This section describes the routines related to the flash memory and SRAM, where
Program Manager and File System reside respectively.

 For 8400/8700 Series, it allows using SD card.

Memory Size Flash Memory SRAM SD Card

8000 Series 2 MB 2 MB, 4 MB N/A

8200 Series 8 MB 4 MB, 8 MB Supported

8300 Series 2 MB 2 MB, 6 MB, 10 MB N/A

8400 Series 4 MB 4 MB, 16 MB Supported

8500 Series 2 MB 2 MB, 6 MB, 10 MB N/A

8700 Series 8 MB 4 MB, 12 MB, 20 MB Supported

2.14.1 FLASH

The flash memory is divided into a number of memory banks, and each bank is 64 KB.

 If 2 MB, it is divided into 32 banks. (8000/8300/8500)
 If 4 MB, it is divided into 64 banks. (8400)
 If 8 MB, it is divided into 128 banks. (8200/8700)

8000, 8300, 8400, 8500
The kernel itself takes 2 banks, and the system reserves 1 bank (0xF60000~0xF6FFFF) for data
storage, such as the application settings. The rest banks are available for storing user programs as
well as font files. Because the flash memory is non-volatile, it needs to be erased before writing to
the same bank, 0xF60000~0xF6FFFF. This memory bank is further divided into 256 records,
numbering from 1 ~ 256 and each with length limited to 255 bytes.

Note: (1) Up to 256 records can be saved. The flash memory can only be erased on a
bank basis, that is, all the records stored in 0xF60000 ~ 0xF6FFFF will be gone. (2)
For 8400, the system reserves 6 banks (0xF00000~0xF5FFFF) for future use.

8200, 8700
The kernel itself takes 22 banks, and the system reserves banks (0xF60000~0xF6FFFF,
0x800000~0xBFFFFF) for data storage, such as the application settings. The rest banks are
available for storing user programs as well as font files.

 User program location in flash: 0xC00000~0xDFFFFF

 Kernel location in flash:0xE00000~0xF5FFFF

 Bootloader location in flash: 0xFF0000~0xFFFFFF

 139

 Chapter 2 Mobile-Specific Function Library

EraseSector

Purpose To erase a whole sector of the flash memory.

Syntax int EraseSector (void *sector_start_addr);

Example EraseSector((void *)0xF60000);

Return Value If successful, it returns 1.

Otherwise, it returns 0.

Remarks This routine erases the flash memory before calling WriteFlash() to write data
to the flash memory.

FlashSize

Purpose To get the size of the flash memory (for storing user programs).

Syntax int FlashSize (void);

Example FlashSize();

Return Value This routine returns the size of the flash memory in kilobyte.

WriteFlash

Purpose To write data to the flash memory.

Syntax int WriteFlash (void *target_addr, void *source_addr, unsigned long size);

Example char szData[100];

EraseSector((void *)0xF60000);

WriteFlash((void *)0xF60000, szData, 100);

Return Value If successful, it returns 1.

Otherwise, it returns 0.

Remarks The flash memory can also be used to store data if the user programs have not
used all of it.

 The possible available flash memory is 64 Kbytes and its address starts
from 0xF60000.

140

CipherLab C Programming Part I

2.14.2 SRAM

The File System keeps user data in SRAM, which is maintained by the backup battery.
However, data loss may occur during low battery condition or when the battery is drained.
It is necessary to upload data to a host computer before putting away the mobile
computer.

free_memory

Purpose To get the size of free memory in SRAM.

Syntax long free_memory (void);

Example available_memory = free_memory();

Return Value This routine returns the size of the free memory in byte.

Remarks This routine gets the amount of free (unused) memory of the file space.

init_free_memory

Purpose To initialize the file space in SRAM.

Syntax void init_free_memory (void);

Example init_free_memory();

Return Value None

Remarks This routine first tries to identify how many SRAM cards are installed, and then
initialize the overall file space (total SRAMs deducts memory of system space
and user space).

 The original contents of the file space will be wiped out after calling this
routine.

 Whenever the amount of the SRAMs installed is changed, this routine must
be called to recognize such change.

RamSize

Purpose To get the size of data memory (SRAM) for storing data files.

Syntax int RamSize (void);

Example RamSize();

Return Value This routine returns the size of SRAM in kilobyte.

 141

 Chapter 2 Mobile-Specific Function Library

2.14.3 SD CARD

ffreebyte 8200, 8400, 8700

Purpose To get the number of free kilobytes on SD card.

Syntax long ffreebyte (void) ;

Example long freekb;

if ((freekb = ffreebyte()) == -1L)

printf(“Get free byte failed!”);

Return Value If successful, it returns a long integer containing the number of free kilobytes
on SD card.

On error, it returns -1L. The global variable ferrno is set to indicate the error
condition encountered.

fsize 8200, 8400, 8700

Purpose To get the volume of SD card, excluding the space used by FAT structure.

Syntax long fsize (void) ;

Example long size;

if ((size = fsize()) == -1L)

printf(“Get card size failed!”);

Return Value If successful, it returns a long integer containing the number of free kilobytes
on SD card.

On error, it returns -1L. The global variable ferrno is set to indicate the error
condition encountered.

142

CipherLab C Programming Part I

2.15 FILE MANIPULATION

There are many file manipulation routines available for programming the mobile
computers. These routines help manipulate the transaction data and ease the
implementation of database system.

Two types of file structures are supported —

 Sequential structure called DAT file that is usually used to store transaction data.
 Index structure is usually used to store lookup data. Actually, there are two types of

index file. One is DBF for storing the original data records (data members), and the
other is IDX for sorting the records according to the associate key.

These two file structures will be further discussed later in this section.

For 8200/8400/8700, it supports SD card, on which you may store DAT files, as well as
DBF and IDX files. Refer to 2.16 SD Card.

File Structure Files in SRAM Files on SD Card

DAT Files Refer to 2.15.6 DAT Files. Refer to 2.16.5 SD Card Manipulation.

DBF and IDX Files Refer to 2.15.7 DBF Files and IDX Files.

2.15.1 FILE SYSTEM

On each mobile computer, on-board SRAM is provided for data memory. This is the place
where all the system parameters, program variables, program stack, and file system
resides.

2.15.2 DIRECTORY

The file system is flat, that is, it does not support hierarchical tree directory structure,
and no sub-directory can be created. There is a limit for the total number of files, which
includes all DAT files as well as DBF files and their associated IDX files. To get the
information of the file directory, you can call filelist().

 Max. 254 files

2.15.3 FILE NAME

A file name is a null terminated character string containing 1 ~ 8 characters (the null
character not included), which is used to identify the file in the system. There is no file
extension as in MS-DOS operation system. The file name can be changed later by calling
rename().

 If a file name specified is longer than eight characters, it will be truncated to eight
characters.

 The file name is case-sensitive.

 143

 Chapter 2 Mobile-Specific Function Library

2.15.4 FILE HANDLE (FILE DESCRIPTOR)

File handle is the identification of a file after the file is opened. Most of the file
manipulation functions need file handles instead of file names when calling them.

 A file handle is a positive integer (greater than zero) that is returned from the system
when a file is created or opened. All subsequent file operations can then use the file
handle to identify the file.

2.15.5 ERROR CODE

A system variable “fErrorCode” is used to indicate the result of the last file operation.

 A value other than zero indicates error. The error code can be accessed by calling
read_error_code().

144

CipherLab C Programming Part I

Below are the routines applicable to both types of files, DAT and DBF files (with
associated IDX files).

access

Purpose To check whether a file exists or not.

Syntax int access (char *filename);

Parameters char *filename

Pointer to a buffer where the filename of the file to be checked is stored.

 If the filename exceeds eight characters, it will be truncated to eight
characters.

Example if (access(“data1”)) puts(“data1 exist!\n”);

Return Value If file exists, it returns 1.

If file does not exist, it returns 0.

On error, it returns -1.

 An error code is set to the global variable fErrorCode to indicate the error
condition encountered. Below are possible error codes and their
interpretation.

Error Code Meaning

1 filename is a NULL string.

filelist

Purpose To get information about the file directory.

Syntax int filelist (char *dir);

Parameters char *dir

Pointer to a buffer where the information is copied to.

 The size of buffer must be at least 25 * (No. of files) +1, which means
you need to multiply the total number of files by 25, and then plus 1 for
the terminating character. It takes at most 25 bytes to store information
of each file. See the format of file information below.

Example total_file = filelist(dir);

Return Value It simply returns the number of files currently exist in the system.

Remarks This routine copies the file name, file type, and file size information (separated
by a blank character) of all files in existence into a character array specified by
the argument dir.

 145

 Chapter 2 Mobile-Specific Function Library

get_file_number

Purpose To get the total number of a specific file type.

Syntax int get_file_number (int type);

Parameters int type

0 Get the number of total files.

1 Get the number of DAT files.

2 Get the number of DBF files.

3 Get the number of Index files.

Example total_DAT_file = get_file_number(1);

Return Value It simply returns the number of files.

Remarks For filelist(), the same result can be obtained from get_file_number(0).

read_error_code

Purpose To get the value of the global variable fErrorCode.

Syntax int read_error_code (void);

Example if (read_error_code() == 2) puts(“File not exist!\n”);

Return Value It returns the value of the global variable fErrorCode.

Remarks This routine gets the value of the global variable fErrorCode and returns the
value to the calling program. You may call this function to get the error code of
the previously called routine for file manipulation. Yet, the global variable
fErrorCode can be directly accessed without making a call to this routine.

remove

Purpose To delete a file.

Syntax int remove (char *filename);

Parameters char *filename

Pointer to a buffer where the filename of the file to be deleted is stored.

 If the filename exceeds eight characters, it will be truncated to eight
characters.

 If the file to be deleted is a DBF file, the DBF file and all the index (key)
files associated to it will be deleted together.

Example if (remove(“data1”)) puts(“data1 is deleted!\n”);

Return Value If successful, it returns 1.

On error, it returns 0.

 An error code is set to the global variable fErrorCode to indicate the error
condition encountered. Below are possible error codes and their
interpretation.

Error Code Meaning

1

2

10

filename is a NULL string.

File specified by filename does not exist.

Not enough free block.

146

CipherLab C Programming Part I

rename

Purpose To change the file name of an existing file.

Syntax int rename (char *old_filename, char *new_filename);

Parameters char *old_filename

Pointer to a buffer where the original filename is stored.

char *new_filename

Pointer to a buffer where the new filename is stored.

 If any of the two file name exceeds eight characters, it will be truncated to
eight characters.

 If the file specified by old_filename is a DBF file, the file name of the DBF
file and all the index (key) files associated to it will be changed to
new_filename together.

Example if (rename(“data1”, “text1”)) puts(“data1 is renamed!\n”);

Return Value If successful, it returns 1.

On error, it returns 0.

 An error code is set to the global variable fErrorCode to indicate the error
condition encountered. Below are possible error codes and their
interpretation.

Error Code Meaning

1

2

3

filename is a NULL string.

File specified by filename does not exist.

A file named as new_filename already exists.

 147

 Chapter 2 Mobile-Specific Function Library

2.15.6 DAT FILES

DAT files have a sequential file structure.

 Data at the beginning of a DAT file can be removed by calling the delete_top() or
delete_topln() function. The new file top, the file pointer, and the size of the DAT
file will be adjusted accordingly after calling either of the two functions.

 The append() and appendln() functions can write data to the EOF (end of file)
position, no matter where the file pointer points to. That is, the file pointer position is
not changed after calling these functions.

Normally, this is the scheme for handling the transaction data, that is, reading and
removing data from top of the file, and adding new data to the bottom of a file.

append

Purpose To write a specified number of bytes to the bottom (EOF) of a DAT file.

Syntax int append (int fd, char *buffer, int count);

Parameters int fd

File handle of the target DAT file.

char *buffer

Pointer to a buffer where data is stored.

int count

Number of bytes to be written.

 The maximum number of characters that can be written is 32767.

Example append(fd, “1234567890”, 10);

Return Value If successful, it returns the number of bytes actually written to the file.

On error, it returns -1.

  An error code is set to the global variable fErrorCode to indicate the error
condition encountered. Below are possible error codes and their
interpretation.

Error Code Meaning

2

4

7

8

9

10

File specified by fd does not exist.

File specified by fd is not a DAT file.

Invalid file handle.

File not opened.

The value of count is negative.

No free file space for file extension.

Remarks This routine writes a number of bytes (count) from the character array buffer
to the bottom of a DAT file (fd).

 Writing of data starts at the end-of-file position, and the file pointer
position is unaffected by the operation. It will automatically extend the file
size to hold the data written.

See Also appendln, read, readln, write, writeln

148

CipherLab C Programming Part I

appendln

Purpose To write a line (null-terminated string) to the bottom (EOF) of a DAT file.

Syntax int appendln (int fd, char *buffer);

Parameters int fd

File handle of the target DAT file.

char *buffer

Pointer to a buffer where data is stored.

Example appendln(fd, data_buffer);

Return Value If successful, it returns the number of bytes actually written to the file,
including the null character.

On error, it returns -1.

 An error code is set to the global variable fErrorCode to indicate the error
condition encountered. Below are possible error codes and their
interpretation.

Error Code Meaning

2

4

7

8

10

11

File specified by fd does not exist.

File specified by fd is not a DAT file.

Invalid file handle.

File not opened.

No free file space for file extension.

Cannot find string terminator in buffer.

Remarks This routine writes a null-terminated string from the character array buffer to
the bottom of a DAT file (fd).

 Characters are written to the file until a null character (\0) is encountered.
The null character is also written to the file.

 Writing of data starts at the end-of-file position, and the file pointer
position is unaffected by the operation. It will automatically extend the file
size to hold the data written.

See Also append, read, readln, write, writeln

 149

 Chapter 2 Mobile-Specific Function Library

chsize

Purpose To extend or truncate a DAT file.

Syntax int chsize (int fd, long size);

Parameters int fd

File handle of the target DAT file.

long size

New size of the file, in bytes.

Example if (chsize(fd, 0L)) puts(“file is truncated!\n”);

Return Value If successful, it returns 1.

On error, it returns 0.

  An error code is set to the global variable fErrorCode to indicate the error
condition encountered. Below are possible error codes and their
interpretation.

Error Code Meaning

2

4

7

8

10

File specified by fd does not exist.

File specified by fd is not a DAT file.

Invalid file handle.

File not opened.

No free file space for file extension.

Remarks This routine extends or truncates a DAT file (fd) to match the new file length in
bytes given in the argument size.

 If the file is truncated, all data beyond the new file size will be lost.

 If the file is extended, no initial value is filled to the newly extended area.

150

CipherLab C Programming Part I

close

Purpose To close a previously opened or created DAT file.

Syntax int close (int fd);

Parameters int fd

File handle of the target DAT file.

Example if (close(fd)) puts(“file is closed!\n”);

Return Value If successful, it returns 1.

On error, it returns 0.

 An error code is set to the global variable fErrorCode to indicate the error
condition encountered. Below are possible error codes and their
interpretation.

Error Code Meaning

2

4

7

8

File specified by fd does not exist.

File specified by fd is not a DAT file.

Invalid file handle.

File not opened.

See Also open

 151

 Chapter 2 Mobile-Specific Function Library

delete_top

Purpose To delete a specified number of bytes from the top (beginning-of-file position)
of a DAT file.

Syntax int delete_top (int fd, int count);

Parameters int fd

File handle of the target DAT file.

int count

Number of bytes to be deleted.

Example delete_top(fd, 80);

Return Value If successful, it returns the number of bytes actually removed from the file.

On error, it returns -1.

 An error code is set to the global variable fErrorCode to indicate the error
condition encountered. Below are possible error codes and their
interpretation.

Error Code Meaning

2

4

7

8

9

File specified by fd does not exist.

File specified by fd is not a DAT file.

Invalid file handle.

File not opened.

The value of count is negative.

Remarks This routine deletes the number of bytes (count) from a DAT file (fd).

 Removal of data starts at the beginning-of-file position of the file, and the
file pointer position is adjusted accordingly.

 For example, if initially the file pointer points to the tenth character, after
deleting eight characters from the file, the new file pointer will points to the
2nd character of the file. It will resize the file size automatically.

See Also delete_topln

152

CipherLab C Programming Part I

delete_topln

Purpose To delete a line (null-terminated string) from the top (beginning-of-file
position) of a DAT file.

Syntax int delete_topln (int fd);

Parameters int fd

File handle of the target DAT file.

Example delete_topln(fd);

Return Value If successful, it returns the number of bytes actually removed from the file,
including the null character.

On error, it returns -1.

 An error code is set to the global variable fErrorCode to indicate the error
condition encountered. Below are possible error codes and their
interpretation.

Error Code Meaning

2

4

7

8

File specified by fd does not exist.

File specified by fd is not a DAT file.

Invalid file handle.

File not opened.

Remarks This routine deletes a null-terminated string specified from a DAT file (fd).

 Characters are removed from the file until a null character (\0) or
end-of-file is encountered. The null character is also removed from the file.

 Removal of data starts at the beginning-of-file position of the file, and the
file pointer position will be adjusted accordingly. It will resize the file size
automatically.

See Also delete_top

 153

 Chapter 2 Mobile-Specific Function Library

eof

Purpose To check whether or not the file pointer of a DAT file reaches the end-of-file
(eof) position.

Syntax int eof (int fd);

Parameters int fd

File handle of the target DAT file.

Example if (eof(fd)) puts(“end of file is reached!\n”);

Return Value If EOF is reached, it returns 1.

If EOF is not reached, it returns 0.

On error, it returns -1.

 An error code is set to the global variable fErrorCode to indicate the error
condition encountered. Below are possible error codes and their
interpretation.

Error Code Meaning

2

4

7

8

File specified by fd does not exist.

File specified by fd is not a DAT file.

Invalid file handle.

File not opened.

filelength

Purpose To get the size information (in bytes) of a DAT file.

Syntax long filelength (int fd);

Parameters int fd

File handle of the target DAT file.

Example data_size = filelength(fd);

Return Value If successful, it returns the number of bytes for file size.

On error, it returns -1L.

 An error code is set to the global variable fErrorCode to indicate the error
condition encountered. Below are possible error codes and their
interpretation.

Error Code Meaning

2

4

7

8

File specified by fd does not exist.

File specified by fd is not a DAT file.

Invalid file handle.

File not opened.

154

CipherLab C Programming Part I

lseek

Purpose To reposition the file pointer of a DAT file.

Syntax long lseek (int fd, long offset, int origin);

Parameters int fd

File handle of the target DAT file.

long offset

Offset of new position (in bytes) from origin.

int origin

1 Offset from the beginning of the file.

0 Offset from the current position of the file pointer.

-1 Offset from the end of the file.

Example lseek(fd, 512L, 0); // skip 512 bytes

Return Value If successful, it returns the number of bytes of offset.

On error, it returns -1L.

 An error code is set to the global variable fErrorCode to indicate the error
condition encountered. Below are possible error codes and their
interpretation.

Error Code Meaning

2

4

7

8

9

15

File specified by fd does not exist.

File specified by fd is not a DAT file.

Invalid file handle.

File not opened.

The value of origin is invalid.

New position is beyond end-of-file.

Remarks This routine repositions the file pointer of a DAT file (fd) by seeking a number
of bytes (offset) from the given position (origin).

See Also tell

 155

 Chapter 2 Mobile-Specific Function Library

open

Purpose To open a DAT file and get its file handle for further processing.

Syntax int open (char *filename);

Parameters char *filename

Pointer to a buffer where the filename of the file to be opened is stored.

 If the file specified by filename does not exist, it will be created first.

 If filename exceeds eight characters, it will be truncated to eight
characters.

Example if (fd = open(“data1”) > 0) puts(“data 1 is opened!\n”);

Return Value If successful, it returns the file handle.

On error, it returns -1.

 An error code is set to the global variable fErrorCode to indicate the error
condition encountered. Below are possible error codes and their
interpretation.

 Error Code Meaning

1

4

5

6

filename is a NULL string.

File specified by filename is not a DAT file.

File specified by filename is already opened.

Cannot create file. Because it is beyond the maximum
number of files allowed in the system.

Remarks A file handle is a positive integer (greater than zero) used to identify the file for
subsequent file manipulation on the file.

Once the file is opened, the file pointer is at the beginning of the file.

See Also close

156

CipherLab C Programming Part I

read

Purpose To read a specified number of bytes from a DAT file.

Syntax int read (int fd, char *buffer, int count);

Parameters int fd

File handle of the target DAT file.

char *buffer

Pointer to a buffer where data is stored.

int count

Number of bytes to be read.

Example if ((byte_read = read(fd, buffer, 80)) == -1) puts(“read error!\n”);

Return Value If successful, it returns the number of bytes actually read from the file.

On error, it returns -1.

 An error code is set to the global variable fErrorCode to indicate the error
condition encountered. Below are possible error codes and their
interpretation.

Error Code Meaning

2

4

7

8

9

File specified by fd does not exist.

File specified by fd is not a DAT file.

Invalid file handle.

File not opened.

The value of count is negative.

Remarks This routine reads a number of bytes (count) from a DAT file (fd) to the
character array buffer.

 Reading of data starts from the current position of the file pointer, which is
incremented accordingly when the operation is completed.

See Also readln, write, writeln

 157

 Chapter 2 Mobile-Specific Function Library

readln

Purpose To read a line (null-terminated string) from a DAT file.

Syntax int readln (int fd, char *buffer, int max_count);

Parameters int fd

File handle of the target DAT file.

char *buffer

Pointer to a buffer where data is stored.

int max_count

Maximum number of bytes to be read.

 Usually set to a value which equals the size of the buffer to avoid
overflow.

Example readln(fd, buffer, 80);

Return Value If successful, it returns the number of bytes actually read from the file.

On error, it returns -1.

 An error code is set to the global variable fErrorCode to indicate the error
condition encountered. Below are possible error codes and their
interpretation.

Error Code Meaning

2

4

7

8

9

File specified by fd does not exist.

File specified by fd is not a DAT file.

Invalid file handle.

File not opened.

The value of max_count is negative.

 This routine reads a null-terminated string from a DAT file (fd) to the character
array buffer. Characters are read until end-of-file or a null character (\0) is
encountered, or the total number of character read equals the number
specified by max_count.

Remarks  If characters are read until a null character (\0) is encountered, the null
character is also read into buffer. That is, it is also counted for the return
value. Otherwise, there may not be a null character stored in buffer.

 Reading of data starts from the current position of the file pointer, which is
incremented accordingly when the operation is completed.

See Also read, write, writeln

158

CipherLab C Programming Part I

tell

Purpose To get the current file pointer position of a DAT file.

Syntax long tell (int fd);

Parameters int fd

File handle of the target DAT file.

Example current_position = tell(fd);

Return Value If successful, it returns the number of bytes for the offset from the beginning of
the file to the current file pointer.

On error, it returns -1L.

 An error code is set to the global variable fErrorCode to indicate the error
condition encountered. Below are possible error codes and their
interpretation.

 Error Code Meaning

2

4

7

8

File specified by fd does not exist.

File specified by fd is not a DAT file.

Invalid file handle.

File not opened.

Remarks The file pointer position is expressed in number of bytes from the beginning of
file.

 For example, if the file pointer is at the beginning of the file, its position is
0L.

See Also lseek

 159

 Chapter 2 Mobile-Specific Function Library

write

Purpose To write a specified number of bytes to a DAT file.

Syntax int write (int fd, char *buffer, int count);

Parameters int fd

File handle of the target DAT file.

char *buffer

Pointer to a buffer where data is stored.

int count

Number of bytes to be written.

 The maximum number of characters that can be written is 32767.

Example write(fd, data_buffer, 1024);

Return Value If successful, it returns the number of bytes actually written to the file.

On error, it returns -1.

 An error code is set to the global variable fErrorCode to indicate the error
condition encountered. Below are possible error codes and their
interpretation.

Error Code Meaning

2

4

7

8

9

10

File specified by fd does not exist.

File specified by fd is not a DAT file.

Invalid file handle.

File not opened.

The value of count is negative.

No free file space for file extension.

Remarks This routine writes a number of bytes (count) from the character array buffer
to a DAT file (fd).

 Writing of data starts at the current position of the file pointer, which is
incremented accordingly when the operation is completed.

 If end-of-file is encountered during operation, it will automatically extend
the file size to hold the data written.

See Also append, appendln, read, readln, writeln

160

CipherLab C Programming Part I

writeln

Purpose To write a line (null-terminated string) to a DAT file.

Syntax int writeln (int fd, char *buffer);

Parameters int fd

File handle of the target DAT file.

char *buffer

Pointer to a buffer where data is stored.

Example writeln(fd, data_buffer);

Return Value If successful, it returns the number of bytes actually written to the file,
including the null character.

On error, it returns -1.

 An error code is set to the global variable fErrorCode to indicate the error
condition encountered. Below are possible error codes and their
interpretation.

Error Code Meaning

2

4

7

8

10

11

File specified by fd does not exist.

File specified by fd is not a DAT file.

Invalid file handle.

File not opened.

No free file space for file extension.

Cannot find string terminator in buffer.

Remarks This routine writes a null-terminated string from the character array buffer to a
DAT file (fd).

 Characters are written to the file until a null character (\0) is encountered.
The null character is also written to the file.

 Writing of data starts at the current position of the file pointer, which is
incremented accordingly when the operation is completed.

 If end-of-file is encountered during operation, it will automatically extend
the file size to hold the data written.

See Also append, appendln, read, readln, write

 161

 Chapter 2 Mobile-Specific Function Library

2.15.7 DBF FILES AND IDX FILES

DBF files and IDX files form the platform of database system.

 A DBF file has a fixed record length structure. This is the file that stores data records
(members). Whereas, the associate IDX files are the files that keep information of the
position of each record stored in the DBF files, but they are re-arranged (sorted)
according to some specific key values.

A library would be a good example to illustrate how DBF and IDX files work. When you
are trying to find a specific book in a library, you always start from the index. The book
can be found by looking into the index categories of book title, writer, publisher, ISBN
number, etc. All these index entries are sorted in ascending order for easy lookup
according to some specific information of books (book title, writer, publisher, ISBN
number, etc.) When the book is found in the index, it will tell you where the book is
actually stored.

As you can see, the books kept in the library are analogous to the data records stored in
the DBF file, and, the various index entries are just its associate IDX files. Some
information (book title, writer, publisher, ISBN number, etc.) in the data records is used
to create the IDX files.

KEY NUMBER

Each DBF file can have maximum 8 associate IDX files, and each of them is identified by
its key (index) number. The key number is assigned by user program when the IDX file is
created.

Note: The valid key number ranges from 1 to 8.

KEY VALUE

Data records are not fetched directly from the DBF file but rather through its associated
IDX files. The value of file pointers of the IDX files (index pointers) does not represent
the address of the data records stored in the DBF file. It indicates the sequence number
of a specific data record in the IDX file.

162

CipherLab C Programming Part I

add_member

Purpose To add a data record (member) to a DBF file.

Syntax int add_member (int DBF_fd, char *member);

Parameters int DBF_fd

File handle of the target DBF file.

char *member

Pointer to a buffer where new member is stored.

Example add_member(DBF_fd, member);

Return Value If successful, it returns 1.

On error, it returns 0.

  An error code is set to the global variable fErrorCode to indicate the error
condition encountered. Below are possible error codes and their
interpretation.

Error Code Meaning

2

4

7

8

10

File specified by DBF_fd does not exist.

File specified by DBF_fd is not a DBF file.

Invalid file handle.

File not opened.

No free file space for adding members.

Remarks This routine adds a data record (member) to a DBF file (DBF_fd) and adds
index entries to all the associated IDX files.

 If the length of the added member is greater than allowed for the DBF file
(member_len in the create_DBF() function), the member will be truncated
to fit in.

See Also create_DBF, delete_member

 163

 Chapter 2 Mobile-Specific Function Library

close_DBF

Purpose To close a previously opened or created DBF file and its associated IDX files.

Syntax int close_DBF (int DBF_fd);

Parameters int DBF_fd

File handle of the target DBF file.

Example if (close_DBF(DBF_fd)) puts(“DBF file is closed!\n”);

Return Value If successful, it returns 1.

On error, it returns 0.

 An error code is set to the global variable fErrorCode to indicate the error
condition encountered. Below are possible error codes and their
interpretation.

Error Code Meaning

2

4

7

8

File specified by DBF_fd does not exist.

File specified by DBF_fd is not a DBF file.

Invalid file handle.

File not opened.

Remarks This routine adds a data record (member) to a DBF file (DBF_fd) and adds
index entries to all the associated IDX files.

 If the length of the added member is greater than that defined for the DBF
file (member_len in the create_DBF() function), the member will be
truncated to fit in.

See Also open_DBF

164

CipherLab C Programming Part I

create_DBF

Purpose To create a DBF file and get its file handle for further processing.

Syntax int create_DBF (char *filename, int member_len);

Parameters char *filename

Pointer to a buffer where the filename of the file to be created is stored.

 If filename exceeds eight characters, it will be truncated to eight
characters.

 For 8200/8400/8700 Series, if the file is created on SD card, the filename
must be given in full path and cannot exceed 250 bytes. Refer to 2.16.2
Directory for how to specify a file path.

int member_len

Maximum member (record) length of the DBF file.

 Any member subsequently added to this DBF file with length greater than
the maximum length will be truncated to fit in.

Example if (fd = create_DBF(“data1”, 64) > 0) puts(“data1 is created!\n”);

Return Value If successful, it returns the file handle.

On error, it returns -1.

 An error code is set to the global variable fErrorCode to indicate the error
condition encountered. Below are possible error codes and their
interpretation.

Error Code Meaning

1 filename is a NULL string.

6 Cannot create file. Because it is beyond the maximum
number of files allowed in the system.

9

12

The value of member_len is invalid.

File specified by filename already exists.

Remarks This routine creates a DBF file (filename) with its member length specified
(member_len), and gets the file handle of it.

 A file handle is a positive integer (greater than zero) used to identify the
file for subsequent file manipulation on the file.

 User-defined indexes may be created after the DBF file is created.

See Also close_DBF, create_index, open_DBF

 165

 Chapter 2 Mobile-Specific Function Library

create_index

Purpose To create an IDX file of a DBF file.

Syntax int create_index (int DBF_fd, int key_number, int key_offset, int key_len);

Parameters int DBF_fd

File handle of the target DBF file.

int key_number

Key number of the IDX file to be created.

int key_offset

Offset in bytes where the key value in a member begins.

int key_len

Length of key value of the IDX file: Max. 32767 for SRAM, 1024 for SD card

Example create_index(DBF_fd, 1, 0, 10);

Return Value If successful, it returns 1.

On error, it returns 0.

  An error code is set to the global variable fErrorCode to indicate the error
condition encountered. Below are possible error codes and their
interpretation.

Error Code Meaning

2

4

6

File specified by DBF_fd does not exist.

File specified by DBF_fd is not a DBF file.

Cannot create file. Because it is beyond the maximum
number of files allowed in the system.

7

8

13

17

18

19

Invalid file handle.

File not opened.

The value of key_number is invalid.

The value of key_offset or key_len is invalid.

DBF file specified by DBF_fd is not empty.

IDX file specified by key_number already exists.

Remarks This routine creates an IDX file (key_number), which is associated with a DBF
file (DBF_fd). The key field of the IDX file is specified by key_offset and
key_len.

 The key field should be within member_len as defined in the create_DBF()
function. That is, key_offset plus key_len should not be greater than
member_len.

 This routine can only be called before any members are added to the DBF
file, that is, when the DBF file is empty (no members exist). If any member
exists in the DBF file, rebuild_index() should be used instead.

See Also create_DBF, rebuild_index, remove_index

166

CipherLab C Programming Part I

delete_member

Purpose To delete a data record (member) from a DBF file.

Syntax int delete_member (int DBF_fd, int key_number);

Parameters int DBF_fd

File handle of the target DBF file.

int key_number

Key number of the target IDX file.

Example delete_member(DBF_fd, 1);

Return Value If successful, it returns 1.

On error, it returns 0.

 An error code is set to the global variable fErrorCode to indicate the error
condition encountered. Below are possible error codes and their
interpretation.

Error Code Meaning

2

4

7

8

10

13

14

16

File specified by DBF_fd does not exist.

File specified by DBF_fd is not a DBF file.

Invalid file handle.

File not opened.

Not enough free block.

The value of key_number is invalid.

IDX file specified by key_number does not exist.

No members exist in the DBF file.

Remarks This routine deletes a data record (member) pointed to by the index pointer of
an IDX file (key_number), which is associated with a DBF file (DBF_fd).

See Also add_member, has_member

 167

 Chapter 2 Mobile-Specific Function Library

get_member

Purpose To read a data record (member) from a DBF file.

Syntax int get_member (int DBF_fd, int key_number, char *buffer);

Parameters int DBF_fd

File handle of the target DBF file.

int key_number

Key number of the target IDX file.

char *buffer

Pointer to a buffer where the member is read into. The size of buffer should
be at least one byte more than the member length (buffer ≧ member length
+1) because it will add the terminating null character.

Example if (get_member(DBF_fd, 1, buffer) == 0) puts(buffer);

Return Value If successful, it returns 1.

On error, it returns 0.

 An error code is set to the global variable fErrorCode to indicate the error
condition encountered. Below are possible error codes and their
interpretation.

Error Code Meaning

2

4

7

8

13

14

16

File specified by DBF_fd does not exist.

File specified by DBF_fd is not a DBF file.

Invalid file handle.

File not opened.

The value of key_number is invalid.

IDX file specified by key_number does not exist.

No members exist in the DBF file.

Remarks This routine reads a data record (member) pointed to by the index pointer of
an IDX file (key_number), which is associated with a DBF file (DBF_fd).

See Also has_member

168

CipherLab C Programming Part I

has_member

Purpose To check whether or not a specific data record (member) exists in a DBF file.

Syntax int has_member (int DBF_fd, int key_number, char *key_value);

Parameters int DBF_fd

File handle of the target DBF file.

int key_number

Key number of the target IDX file.

char *key_value

Pointer to a buffer where a key value is held to identify a specific member.

Example if (has_member(DBF_fd, 1, (char *)“JOHN”) == 1)

{

get_member(DBF_fd, 1, buffer);

puts(buffer);

}

else

{

 printf(“JOHN is not on the name list!\n”);

}

Return Value If a member exists, it returns 1.

If a member does not exist, it returns 0.

On error, it returns -1.

 An error code is set to the global variable fErrorCode to indicate the error
condition encountered. Below are possible error codes and their
interpretation.

Error Code Meaning

2

4

7

8

13

14

File specified by DBF_fd does not exist.

File specified by DBF_fd is not a DBF file.

Invalid file handle.

File not opened.

The value of key_number is invalid.

IDX file specified by key_number does not exist.

Remarks This routine searches for the key_value in any data record (member) of an IDX
file (key_number), which is associated with a DBF file (DBF_fd).

 If there is a complete match to the key_value, the index pointer will point
to the first of all matches.

 In case there is more than one member containing the key value, check
each member sequentially from the one currently is pointed to by the index
pointer until the desired member is found.

See Also get_member

 169

 Chapter 2 Mobile-Specific Function Library

lseek_DBF

Purpose To reposition the file pointer of an IDX file.

Syntax long lseek_DBF (int DBF_fd, int key_number, long offset, int origin);

Parameters int DBF_fd

File handle of the target DBF file.

int key_number

Key number of the target IDX file.

long offset

Offset of new position, sequence number from origin.

int origin

1 Offset from the first index of the IDX file.

0 Offset from the current position of the index pointer.

-1 Offset from the last index of the IDX file.

Example lseek_DBF(DBF_fd, 1, 1L, 0); // move to next member

Return Value If successful, it returns the sequence number of offset.

On error, it returns -1.

 An error code is set to the global variable fErrorCode to indicate the error
condition encountered. Below are possible error codes and their
interpretation.

Error Code Meaning

2

4

7

8

9

13

14

15

File specified by DBF_fd does not exist.

File specified by DBF_fd is not a DBF file.

Invalid file handle.

File not opened.

The value of origin is invalid.

The value of key_number is invalid.

IDX file specified by key_number does not exist.

New position is beyond end-of-file.

Remarks This routine repositions the file pointer of an IDX file (key_number), which is
associated with a DBF file (DBF_fd), by seeking a sequence number (offset)
from the given position origin.

See Also tell_DBF

170

CipherLab C Programming Part I

member_in_DBF

Purpose To get the total number of members in a DBF file.

Syntax long member_in_DBF (int DBF_fd);

Parameters int DBF_fd

File handle of the target DBF file.

Example total_member = member_in_DBF(DBF_fd);

Return Value If successful, it returns the number of members.

On error, it returns -1.

 An error code is set to the global variable fErrorCode to indicate the error
condition encountered. Below are possible error codes and their
interpretation.

Error Code Meaning

2

4

7

8

File specified by DBF_fd does not exist.

File specified by DBF_fd is not a DBF file.

Invalid file handle.

File not opened.

 171

 Chapter 2 Mobile-Specific Function Library

open_DBF

Purpose To open an existing DBF file and get its file handle for further processing.

Syntax int open_DBF (char *filename);

Parameters char *filename

Pointer to a buffer where the filename of the DBF file to be opened is stored.

 If the filename exceeds eight characters, it will be truncated to eight
characters.

 For 8200/8400/8700 Series, if the file is created on SD card, the filename
must be given in full path and cannot exceed 250 bytes. Refer to 2.16.2
Directory for how to specify a file path.

Example if (fd = open_DBF(“data1”) > 0) puts(“data1 is opened!\n”);

Return Value If successful, it returns the file handle.

On error, it returns -1.

 An error code is set to the global variable fErrorCode to indicate the error
condition encountered. Below are possible error codes and their
interpretation.

Error Code Meaning

1

2

4

5

filename is a NULL string.

File specified by filename does not exist.

File specified by filename is not a DBF file.

File specified by filename is already opened.

Remarks This routine simultaneously opens all the IDX (key) files associated with the
DBF file being opened. After the DBF is opened, the index pointers of all the
associated index files point to the beginning of the respective index.

 A file handle is a positive integer (greater than zero) used to identify the
file for subsequent file manipulation on the file.

See Also close_DBF, create_DBF, create_index

172

CipherLab C Programming Part I

rebuild_index

Purpose To rebuild an IDX file of a DBF file.

Syntax int rebuild_index (int DBF_fd, int key_number, int base_index, int
key_offset, int key_len);

Parameters int DBF_fd

File handle of the target DBF file.

int key_number

Key number of the target IDX file.

 If the IDX file already exists, it will be overwritten; otherwise, this routine
will create a new IDX file.

int base_index

Base index as the preference index.

 If no base index is preferred, the base_index should be 0. Then, the
resulting sequence will be the original member sequence in the DBF file.

int key_offset

Offset in bytes where the key value in a member begins.

int key_len

Length of key value of the IDX file: Max. 32767 for SRAM, 1024 for SD card

Example rebuild_index(DBF_fd, 1, 0, 0, 10);

Return Value If successful, it returns 1.

On error, it returns 0.

 An error code is set to the global variable fErrorCode to indicate the error
condition encountered. Below are possible error codes and their
interpretation.

Error Code Meaning

2

4

6

File specified by DBF_fd does not exist.

File specified by DBF_fd is not a DBF file.

Cannot create file. Because it is beyond the maximum
number of files allowed in the system.

7

8

10

13

14

17

20

21

Invalid file handle.

File not opened.

No free file space for rebuilding index.

The value of key_number is invalid.

IDX file specified by key_number does not exist.

The value of key_offset or key_len is invalid.

The value of base_index is invalid.

Base_index does not exist.

 173

 Chapter 2 Mobile-Specific Function Library

Remarks This routine rebuilds or creates an IDX file (key_number), which is associated
with a DBF file (DBF_fd). It can be used whenever an IDX file has the same
values for a key field. The key field of the IDX file is specified by key_offset and
key_len.

 base_index specifies the IDX file from which this routine takes as the input
sequence for building the new IDX file. For example, if a report is to be
generated by the sequence of date, department, and ID number, and the
date and department data may be repeated. This can be done by rebuilding
the ID number index first. Then, rebuild the department index with the ID
number index as the base index. And finally, rebuild the date index with
the department index as the base index. The resulting member sequence in
the date index will be in date, department, and ID number.

 The key field should be within member_len as defined in the create_DBF()
function. That is, key_offset plus key_len should not be greater than
member_len.

See Also create_index, remove_index

174

CipherLab C Programming Part I

remove_index

Purpose To delete an IDX file of a DBF file.

Syntax int remove_Index (int DBF_fd, int key_number);

Parameters int DBF_fd

File handle of the target DBF file.

int key_number

Key number of the target IDX file.

Example if (remove_index(DBF_fd, 1)) puts(“index is removed!\n”);

Return Value If successful, it returns 1.

On error, it returns 0.

 An error code is set to the global variable fErrorCode to indicate the error
condition encountered. Below are possible error codes and their
interpretation.

Error Code Meaning

2

4

7

8

10

13

14

File specified by DBF_fd does not exist.

File specified by DBF_fd is not a DBF file.

Invalid file handle.

File not opened.

Not enough free block.

The value of key_number is invalid.

IDX file specified by key_number does not exist.

See Also create_index, rebuild_index

 175

 Chapter 2 Mobile-Specific Function Library

tell_DBF

Purpose To get the current index pointer position of an IDX file.

Syntax long tell_DBF (int DBF_fd, int key_number);

Parameters int DBF_fd

File handle of the target DBF file.

int key_number

Key number of the target IDX file.

Example rank_number = tell_DBF(DBF_fd, 1);

Return Value If successful, it returns the rank number for the current index pointer.

On error, it returns -1.

 An error code is set to the global variable fErrorCode to indicate the error
condition encountered. Below are possible error codes and their
interpretation.

Error Code Meaning

2

4

7

8

13

14

File specified by DBF_fd does not exist.

File specified by DBF_fd is not a DBF file.

Invalid file handle.

File not opened.

The value of key_number is invalid.

IDX file specified by key_number does not exist.

Remarks This routine gets the current index pointer position of an IDX file
(key_number), which is associated with a DBF file (DBF_fd).

 The index pointer position is expressed in rank number in the IDX file. For
example, if the index pointer points to the first index, its position will be 1L.

See Also lseek_DBF

176

CipherLab C Programming Part I

UnpackDBF 8000, 8200, 8300, 8400, 8700

Purpose To unpack the DBF files created by PC utility “DataConverter.exe”.

Syntax int UnpackDBF (const char *filenameSource);

Parameters const char *filenameSource

Pointer to a buffer where the source file name is stored.

Example 1 unpack_file_count = UnpackDBF(“packdata”);

// File stored in SRAM

Example 2 unpack_file_count = UnpackDBF(“A:\\DBF_Data”);

// File stored on SD (8200/8400/8700)

Return Value If successful, it returns the number of unpacked DBF files.

On error, it returns 0. The global variable fErrorCode is set to to indicate the
error condition encountered. You may call read_error_code to get the error
code.

Error Code Meaning

2 Source file in SRAM does not exist.

4 Source file format is incorrect.

10 Not enough space in SRAM.

31 Fail to open file on SD card. Read ferrno for more
information.

Remarks It requires using the PC utility “DataConverter.exe” to create legal files (=
packDBF) before downloading DBF files, via RS-232 or FTP, to the mobile
computer and saved to SRAM or SD card. On the mobile computer, it then
requires calling UnpackDBF() to recover the file.

 If it is saved to SRAM, the original packed DBF files will be automatically
removed upon completion of unpacking.

 177

 Chapter 2 Mobile-Specific Function Library

update_member

Purpose To update a data record (member) of a DBF file.

Syntax int update_member (int DBF_fd, int key_number, char *member);

Parameters int DBF_fd

File handle of the target DBF file.

int key_number

Key number of the target IDX file.

char *member

Pointer to a buffer where data to be updated is stored.

Example update_member(DBF_fd, 1, 10);

Return Value If successful, it returns 1.

On error, it returns 0.

 An error code is set to the global variable fErrorCode to indicate the error
condition encountered. Below are possible error codes and their
interpretation.

Error Code Meaning

2

4

7

8

13

14

16

File specified by DBF_fd does not exist.

File specified by DBF_fd is not a DBF file.

Invalid file handle.

File not opened.

The value of key_number is invalid.

IDX file specified by key_number does not exist.

No members exist in the DBF file.

Remarks This routine updates a data record (member) pointed to by the index pointer of
an IDX file (key_number), which is associated with a DBF file (DBF_fd).
Although a data record is updated, the sequence in the index file will not
change. Users have to call rebuild_index() manually to update the sequence in
each index of the DBF file.

See Also has_member

178

CipherLab C Programming Part I

2.15.8 FILE TRANSFER VIA SD CARD

Refer to 2.16 SD Card for details on SD card for 8200/8400/8700 Series.

RAMtoSD_DAT 8200, 8400, 8700

Purpose To copy a DAT file from file system (SRAM) to SD card.

Syntax int RAMtoSD_DAT (const char *filenameRAM, const char *filenameSD, int
mode);

Parameters const char *filenameRAM

Pointer to a buffer where the source DAT file name is stored.

 If filename exceeds eight characters, it will be truncated to eight
characters.

const char *filenameSD

Pointer to a buffer where the target DAT file name is stored.

 The filename must be given in full path. Refer to 2.16.2 Directory for how
to specify a file path.

int mode

0 To remove the source file.

1 To keep the source file.

Example const static char SrcDAT[]= “data1”;

const static char TarDAT[]= “A:\\XACT\\data1.dat”;

printf(“Copy the file to SD card...”);

Fremove(TarDAT); //remove target if it exists

if(!(i=RAMtoSD_DAT((void*) SrcDAT, (void*) TarDAT, 0)))

{

printf(“\r\n Fail! ErrorCode=%d\r”, read_error_code());

 while(1);

}

printf(“Done! File %s on SD card is created\r\n”, TarDAT);

Return Value If successful, it returns 1.

On error, it returns 0. The global variable fErrorCode is set to indicate the error
condition encountered. You may call read_error_code to get the error code.

 179

 Chapter 2 Mobile-Specific Function Library

 Error Code Meaning

1

2

4

5

10

32

Invalid source/target file name.

Source file does not exist.

Source file is not a DAT file.

Source file is already opened.

Not enough free space on SD card

Cannot create target file. Read ferrno for more
information.

33 Cannot write data to target file on SD card. Read
ferrno for more information

Remarks The source DAT file must be closed before calling this routine. If the target file
already exists, it will be overwritten; otherwise, this routine will create a new
DAT file.

See Also SDtoRAM_DAT, SDtoRAM_DBF, RAMtoSD_DBF

180

CipherLab C Programming Part I

SDtoRAM_DAT 8200, 8400, 8700

Purpose To copy a DAT file from SD card to file system (SRAM).

Syntax int SDtoRAM_DAT (const char *filenameSD, const char *filenameRAM, int
mode);

Parameters const char *filenameSD

Pointer to a buffer where the source DAT file name is stored.

 The filename must be given in full path. Refer to 2.16.2 Directory for how
to specify a file path.

const char *filenameRAM

Pointer to a buffer where the target DAT file name is stored.

 If filename exceeds eight characters, it will be truncated to eight
characters.

int mode

0 To remove the source file.

1 To keep the source file.

Example const static char SrcDAT []= “A:\\XACT\\data2.dat”;

const static char TarDAT []= “data2”;

printf(“Copy the file to RAM...”);

remove(TarDAT); //remove target if it exists

if(!(i=SDtoRAM_DAT((void*) SrcDAT, (void*) TarDAT, 1)))

{

 printf(“\r\n Fail! ErrorCode=%d”, read_error_code());

 while(1);

}

printf(“Done! File %s in RAM is created\r\n”, TarDAT);

Return Value If successful, it returns 1.

On error, it returns 0. The global variable fErrorCode is set to indicate the error
condition encountered. You may call read_error_code to get the error code.

Error Code Meaning

1

6

Invalid source/target file name.

Cannot create file. Because it is beyond the maximum
number of files allowed in the system.

10

31

Not enough space.

Fail to open file on SD card. Read ferrno for more
information.

 181

 Chapter 2 Mobile-Specific Function Library

Remarks The source DAT file must be closed before calling this routine. If the target file
already exists, it will be overwritten; otherwise, this routine will create a new
DAT file.

See Also RAMtoSD_DAT, SDtoRAM_DBF, RAMtoSD_DBF

182

CipherLab C Programming Part I

RAMtoSD_DBF 8200, 8400, 8700

Purpose To copy a DBF file and its associated IDX files from file system (SRAM) to SD
card.

Syntax int RAMtoSD_DBF (const char *filenameRAM, const char *filenameSD, int
mode);

Parameters const char *filenameRAM

Pointer to a buffer where the source DBF file name is stored.

 If filename exceeds eight characters, it will be truncated to eight
characters.

const char *filenameSD

Pointer to a buffer where the target DBF file name is stored.

 The filename must be given in full path. Refer to 2.16.2 Directory for how
to specify a file path.

 Filename extension isn’t required. When creating DBF files, it has “.DB0”
as the filename extension for the DBF file itself and “.DB1” ~ “.DB8” for
the IDX files.

int mode

0 To remove the source file.

1 To keep the source file.

Example const static char dbfname2[]= “RAMdbf1”;

const static char dbfname3[]= “A:\\Database\\SDdbf2”;

printf(“Copy the file to SD card...”);

remove(dbfname3); //remove target if it exists

if(!(i=RAMtoSD_DBF((void*) dbfname2, (void*)dbfname3, 0)))

{

printf(“\r\n Fail! ErrorCode=%d\r”, read_error_code());

 while(1);

}

printf(“Done! File %s on SD card is created\r\n”, dbfname3);

 183

 Chapter 2 Mobile-Specific Function Library

Return Value If successful, it returns 1.

On error, it returns 0. The global variable fErrorCode is set to indicate the error
condition encountered. You may call read_error_code to get the error code.

Error Code Meaning

1

4

5

6

Invalid source/target file name.

Source file is not a DBF file.

Source file is already opened.

Cannot create file. Because it is beyond the maximum
number of files allowed in the system.

10 Not enough space.

11 Source file doesn’t exist.

Remarks The source DBF file must be closed before calling this routine. If the target file
already exists, it will be overwritten; otherwise, this routine will create a new
DBF file.

The source DBF file must have at least one IDX file.

See Also RAMtoSD_DAT, SDtoRAM_DAT, SDtoRAM_DBF

184

CipherLab C Programming Part I

SDtoRAM_DBF 8200, 8400, 8700

Purpose To copy a DBF file and its associated IDX files from SD card to file system
(SRAM).

Syntax int SDtoRAM_DBF (const char *filenameSD, const char *filenameRAM, int
mode);

Parameters const char *filenameSD

Pointer to a buffer where the source DBF file name is stored.

 The filename must be given in full path. Refer to 2.16.2 Directory for how
to specify a file path.

const char *filenameRAM

Pointer to a buffer where the target DBF file name is stored.

 If filename exceeds eight characters, it will be truncated to eight
characters.

int mode

0 To remove the source file.

1 To keep the source file.

Example const static char dbfname1[]= “A:\\SDdbf1”;

const static char dbfname2[]= “RAMdbf1”;

printf(“Copy the file to RAM...”);

remove(dbfname2); //remove target if it exists

if(!(i=SDtoRAM_DBF((void*)dbfname1, (void*) dbfname2, 1)))

{

 printf(“\r\n Fail! ErrorCode=%d”, read_error_code());

 while(1);

}

printf(“Done! File %s in RAM is created\r\n”, dbfname2);

Return Value If successful, it returns 1.

On error, it returns 0. The global variable fErrorCode is set to indicate the error
condition encountered. You may call read_error_code to get the error code.

Error Code Meaning

1

4

5

6

Invalid source/target file name.

Source file is not a DBF file.

Source file is already opened.

Cannot create file. Because it is beyond the maximum
number of files allowed in the system.

10 Not enough space.

 185

 Chapter 2 Mobile-Specific Function Library

Remarks The source DBF file must be closed before calling this routine. If the target file
already exists, it will be overwritten; otherwise, this routine will create a new
DBF file.

See Also RAMtoSD_DAT, RAMtoSD_DBF, SDtoRAM_DAT

2.15.9 GET FILE INFORMATION

Refer to 2.16 SD Card for details on SD card for 8200/8400/8700 Series.

GetFileInfo 8200,8400,8700

Purpose To get file information from file system (SRAM) or SD card.

Syntax Int GetFileInfo (const char *filename, DEVICE_FILEINFO *InfoBuf);

Parameters char *filename

Pointer to a buffer where the file name of the target file is stored.

 If the file name exceeds eight characters, it will be truncated to eight
characters.

 If the file is on SD card,the file name must be given in full path and follow
8.3 format.

DEVICE_FILEINFO *InfoBuf

Pointer to DEVICE_FILEINFO structure, which is defined in 8200lib.h,
8400lib.h, and 8700lib.h header files.

186

CipherLab C Programming Part I

Example DEVICE_FILEINFO InfoBuf;

int i;

if (GetFileInfo("a:\\DBF1.DB0",&InfoBuf) ==1){

 printf ("FileType=%d \r\n", InfoBuf.file_type);

 printf ("FileOpen=%d \r\n", InfoBuf.open_status);

 printf ("FileSize=%d \r\n", InfoBuf.fileSize);

 printf ("total_member=%d \r\n", InfoBuf.total_member);

 printf ("Member_len=%d \r\n", InfoBuf.Member_len);

 printf("IndexNumber:%d \r\n", InfoBuf.IndexNumber);

 //show each index file (1~8) information

 for(i=0;i<8;i++){

 printf ("key%d len=%d\r\n", i, InfoBuf.index[i].key_len);

 printf ("offset=%d\r\n", InfoBuf.index[i].key_offset);

 printf ("sz=%d\r\n", InfoBuf.index[i].index_file_size);

 }

 }

else{

 printf("No file\r\n”);

}

Return Value If successful, it returns 1.

If file does not exist, it returns 0.

If file name or buffer pointer is null. It returns -1.

See Also fgetinfo

 187

 Chapter 2 Mobile-Specific Function Library

2.15.10 DEVICE_FILEINFO STRUCTURE

Use GetFileInfo () to access the file or directory information.

typedef struct {

unsigned char file_type;

unsigned char open_status;

unsigned long fileSize;

unsigned long total_member;

unsigned int Member_len;

unsigned char IndexNumber;

struct index_INFO index[8];

} DEVICE_FILEINFO;

struct index_INFO {

unsigned int key_len;

unsigned int key_offset;

unsigned long index_file_size;

};

188

CipherLab C Programming Part I

Member Description Valid for File

File_type File types:

1 DAT

2 DBF

3 INDEX

All

Open-status Open status:

1 Open

0 Close

All

filesize File size in bytes. All

total_member Total number of record in DBF member file DBF Record file

Member_len Member length defined in create_DBF DBF Record file

IndexNumber Number of created index file DBF Record file

index[0].key_len Key length of the index file 1 DBF Record file

*Key length of the index file *Index file

index[0].key_ offset Key offset of the index file 1 DBF Record file

*Key offset of the index file *Index file

index[0].index _file_size File size of the index file 1 DBF Record file

*File size of the index file will be the same as
fileSize

*Index file

index[1].key_len Key length of the index file 2 DBF Record file

index[1].key_offset Key offset of the index file 2 DBF Record file

index[1].index _file_size File size of the index file 2 DBF Record file

index[2].key_len Key length of the index file 3 DBF Record file

index[2].key_offset Key offset of the index file 3 DBF Record file

index[2].index_file_size File size of the index file 3 DBF Record file

index[3].key_len Key length of the index file 4 DBF Record file

index[3].key_offset Key offset of the index file 4 DBF Record file

index[3].index_file_size File size of the index file 4 DBF Record file

index[4].key_len Key length of the index file 5 DBF Record file

index[4].key_offset Key offset of the index file 5 DBF Record file

index[4].index_file_size File size of the index file 5 DBF Record file

index[5].key_len Key length of the index file 6 DBF Record file

index[5].key_offset Key offset of the index file 6 DBF Record file

index[5].index_file_size File size of the index file 6 DBF Record file

index[6].key_len Key length of the index file 7 DBF Record file

index[6].key_offset Key offset of the index file 7 DBF Record file

 189

 Chapter 2 Mobile-Specific Function Library

index[6].index_file_size File size of the index file 7 DBF Record file

index[7].key_len Key length of the index file 8 DBF Record file

index[7].key_offset Key offset of the index file 8 DBF Record file

index[7].index _file_size File size of the index file 8 DBF Record file

Filename & Location Type Provided Information

Files in the RAM

File name without prefix

“a:\\” or “a:/”

e.g. DATA1

DAT file_type

open_status

fileSize

DBF file_type

open_status

fileSize

total_member

Member_len

IndexNumber

index[0]~index[7] (key_len, key_offset, index_file_size)

Files in SD card

File name with prefix

 “a:\\” or “a:/”

e.g.

a:/DATA1.DB0

a:/DATA1.DB1

DAT file_type

open_status

fileSize

DBF (DBF Record file: DB0)

file_type

open_status

fileSize

total_member

Member_len

IndexNumber

index[0]~index[7] (key_len, key_offset, index_file_size)

 (*Index file: DB1~DB8)

file_type

open_status

fileSize

index[0] (key_len, key_offset, index_file_size)

190

CipherLab C Programming Part I

Note:

DBF Record file: DB0

e.g. File name = A:/DATA1.DB0

Get the information of member file. All its keys are stored in index[0]~index[7]

*Index file: DB1~DB8

e.g. File name = A:/DATA1.DB1

 A:/DATA1.DB2

 …

 A:/DATA1.DB8

Only get the information of this Index file. Key length and offset are stored in index[0]

 191

 Chapter 2 Mobile-Specific Function Library

2.16 SD CARD

SD card can be accessed directly by using the provided functions in user application. Yet,
when 8200/8400/8700 is equipped with SD card and connected to your computer via the
USB cable, it can be treated as a removable disk (USB mass storage device) as long as it
is configured properly through programming or via System Menu | SD Card Menu |
Run As USB Disk. Refer to Part II: Chapter 9 USB Connection and 2.16.6 Mass
Storage Device.

For memory information, refer to 2.14.3 SD Card.

Note: It is not allowed for the mobile computer to directly access SD card when COM5 is
set to mass storage use (pass COMM_USBDISK to SetCommType).

Direct Access to SD for DAT Files
 Use the functions provided in 2.16.5 SD Card Manipulation to access DAT files on SD card,

which can be under any directory. Filename must be given in full path while filename extension
is ignored.

Note: It can have maximum 32 files and 3 directories opened at the same time. It is
suggested that you close a file or directory whenever it is no longer desired; otherwise,
the file handles may be depleted.

Direct Access to SD for DBF Files
 Use the functions provided in 2.15.7 DBF Files and IDX Files to access DBF files on SD card,

which can be under any directory. Filename must be given in full path; however, filename
extension is not required. When creating DBF files, it will have “.DB0” as the filename extension
for the DBF file itself and “.DB1” ~ “.DB8” for the IDX files.

 Use the functions provided in 2.15.8 File Transfer via SD Card to copy a DBF file from SRAM to
SD card, and vice versa. The source DBF file must be closed before copying.

USB Mass Storage Device
When mass storage is in use, (1) all opened files will be closed automatically and (2) if any of the
functions in 2.16.5 SD Card Manipulation is called before close_com(5), the error code
E_SD_OCCUPIED is returned to indicate the SD card is currently occupied as mass storage device.

192

CipherLab C Programming Part I

2.16.1 FILE SYSTEM

It supports FAT12/FAT16/FAT32 and allows formatting the card through programming or
via System Menu | SD Card Menu | Access SD Card. Based on the capacity of the
card, it will automatically decide the FAT format upon calling fformat():

Card Capacity FAT Format Sectors per Cluster

≦ 32 MB FAT12 32

≦ 1 GB FAT16 32

≦ 2 GB FAT16 64

≦ 8 GB FAT32 8

 193

 Chapter 2 Mobile-Specific Function Library

2.16.2 DIRECTORY

Unlike the file system on SRAM, the file system on SD card supports hierarchical tree
directory structure and allows creating sub-directories. Several directories are reserved
for particular use.

Reserved Directory Related Application or Function Remark

\Program  System Menu | Load Program

 Program Manager | Download

 Program Manager | Activate

 Kernel Menu | Load Program

 Kernel Menu | Kernel Update

 UPDATE_BASIC()

Store programs to this folder so that you can
download them to the mobile computer:

 C program — *.SHX

 BASIC program — *.INI and *.SYN

\BasicRun BASIC Runtime Store DAT and DBF files that are created and
accessed in BASIC runtime to this folder.
Their permanent filenames are as follows:

DAT Filename

DAT file #1 TXACT1.DAT

DAT file #2 TXACT2.DAT

DAT file #3 TXACT3.DAT

DAT file #4 TXACT4.DAT

DAT file #5 TXACT5.DAT

DAT file #6 TXACT6.DAT

DBF Filename

DBF file #1 Record file F1.DB0

System Default
Index

F1.DB1

Index file #1 F1.DB2

Index file #2 F1.DB3

Index file #3 F1.DB4

DBF file #2 Record file F2.DB0

System Default
Index

F2.DB1

Index file #1 F2.DB2

Index file #2 F2.DB3

Index file #3 F2.DB4

DBF file #3 Record file F3.DB0

System Default
Index

F3.DB1

Index file #1 F3.DB2

194

CipherLab C Programming Part I

 Index file #2 F3.DB3

Index file #3 F3.DB4

DBF file #4 Record file F4.DB0

System Default
Index

F4.DB1

Index file #1 F4.DB2

Index file #2 F4.DB3

Index file #3 F4.DB4

DBF file #5 Record file F5.DB0

System Default
Index

F5.DB1

Index file #1 F5.DB2

Index file #2 F5.DB3

Index file #3 F5.DB4

\AG\DBF

\AG\DAT

\AG\EXPORT

\AG\IMPORT

Application Generator (a.k.a. AG) Store DAT, DBF, and Lookup files that are
created and/or accessed in Application
Generator to this folder.

When a file name is required as an argument passed to a function call, it must be given
in full path as shown below.

File Path File in Root Directory File in Sub-directory

“A:\\...” “A:\\UserFile” “A:\\SubDir\\UserFile”

“a:\\...” “a:\\UserFile” “a:\\SubDir\\UserFile”

“A:/...” “A:/UserFile” “A:/SubDir/UserFile”

“a:/...” “a:/UserFile” “a:/SubDir/UserFile”

Note: (1) For DAT files, it does not matter whether filename extension is included or not.
 (2) For DBF files, it does not require including filename extension.

 195

 Chapter 2 Mobile-Specific Function Library

2.16.3 FILE NAME

A file name must follow 8.3 format (= short filenames) — at most 8 characters for
filename, and at most three characters for filename extension. The following characters
are unacceptable: “ * + , : ; < = > ? | []

 It can only display a filename of 1 ~ 8 characters (the null character not included),
and filename extension will be displayed if provided. If a file name specified is longer
than eight characters, it will be truncated to eight characters.

 Long filenames, at most 255 characters, are allowed when using the mobile computer
equipped with SD card as a mass storage device. For example, you may have a
filename “123456789.txt” created from your computer. However, when the same file
is directly accessed on the mobile computer, the filename will be truncated to
“123456~1.txt”.

 If a file name is specified other in ASCII characters, in order for the mobile computer
to display it correctly, you may need to download a matching font file to the mobile
computer first.

 The file name is not case-sensitive.

196

CipherLab C Programming Part I

2.16.4 FILEINFO STRUCTURE

Use fgetinfo() and freaddir() to access the file or directory information.

typedef struct {

char fname[13];

unsigned char fattrib;

unsigned int ftime;

unsigned int fdate;

unsigned long fsize;

} FILEINFO;

Member Description

char fname[13] File name must follow 8.3 format. This field is split into two parts:

(1) 8 characters for file name

(2) 3 character s for file extension

unsigned char fattrib File attributes:

0x01 READ_ONLY

0x02 HIDDEN

0x04 SYSTEM

0x08 VOLUME_ID

0x10 DIRECTORY

0x20 ARCHIVE

unsigned int ftime Time of last write operation. This is a 16-bit field:

Bits 0~4 Seconds (each increment for 2 seconds)

 Valid range 0~29 for 0~58

Bits 5~10 Minutes

 Valid range 0~59

Bits 11~15 Hours

 Valid range 0~23

unsigned int fdate Date of last write operation. This is a 16-bit field:

Bits 0~4 Day of month

 Valid range 1~31

Bits 5~8 Month of year

 Valid range 1~12

Bits 9~15 Year count since 1980

 Valid range 0~127 for 1980~2107

unsigned long fsize File size in bytes.

 197

 Chapter 2 Mobile-Specific Function Library

2.16.5 SD CARD MANIPULATION

chmod 8200, 8400, 8700

Purpose To change the attributes of a file or directory, by the given file path.

Syntax int chmod (const char *filename, int attribute);

Parameters const char *filename

Pointer to a buffer where the filename of the file to be changed is stored.

int attribute

New attribute value given to the file. It can be one or more of the following:

0x00

0x01

0x02

0x04

0x20

FA_NOR

FA_RDO

FA_HID

FA_SYS

FA_ARC

Normal file (= no attributes)

Read-only file

Hidden file (= does not affect accessibility)

System file

Archive bit (= this bit would be set if file is created or
updated)

Example int result;

result = chmod(“A:\\myfile.bin”, FA_SYS|FA_RDO);

if (result == -1)

 printf(“chmod error\n”);

Return Value If successful, it returns the new attributes.

On error, it returns -1. The global variable ferrno is set to indicate the error
condition encountered.

Remarks This routine changes the attributes associated with the file specified by the
argument filename. The filename must be given in full path and follow 8.3
format.

See Also chmodfp

198

CipherLab C Programming Part I

chmodfp 8200, 8400, 8700

Purpose To change the attributes of the file by using the file handle.

Syntax int chmodfp (int fd, int function, int attribute);

Parameters int fd

File handle of the target file.

int function

0 Return the current setting

1 Set new attributes

int attribute

New attribute value given to the file. It can be one or more of the following:

0x00

0x01

0x02

0x04

0x20

FA_NOR

FA_RDO

FA_HID

FA_SYS

FA_ARC

Normal file (= no attributes)

Read-only file

Hidden file (= does not affect accessibility)

System file

Archive bit (=this bit would be set if file is created or
updated)

Example int fd,result;

fd = fopen(“A:\\myfile.bin”,“rb”);

result = chmodfp(fd, 1, FA_SYS|FA_RDO);

if (result == -1)

 printf(“chmodfp error\n”);

Return Value If successful, it returns the new attributes.

On error, it returns -1. The global variable ferrno is set to indicate the error
condition encountered.

Remarks This routine changes the attributes of a file. The new attributes will not take
effect until the file is closed and re-opened. For example, if the file is currently
open for writing, and then made read-only, writing to the file is still allowed
until the file is closed and re-opened.

See Also chmod

 199

 Chapter 2 Mobile-Specific Function Library

fclose 8200, 8400, 8700

Purpose To close a file opened earlier for buffered input and output using fopen().

Syntax int fclose (int fd);

Parameters int fd

File handle of the target file.

Example int fd;

fd = fopen(“A:\\myfile.bin”,“wb”);

if (fclose(fd)!=0)

 printf(“file close error\n”);

Return Value If successful, it returns 0.

On error, it returns -1. The global variable ferrno is set to indicate the error
condition encountered.

Remarks If the file has been opened for writing data, the contents of the buffer
associated with the file are flushed before the file is closed.

See Also fflush, fopen

fclosedir 8200, 8400, 8700

Purpose To close a directory.

Syntax int fclosedir (int dir_handle);

Parameters int dir_handle

File handle of the target directory.

Example int dir_handle;

dir_handle = fopendir(“A:\\SubDir”);

if (fclosedir(dir_handle) !=0)

 printf(“Fail to close a directory.\n”);

Return Value If successful, it returns 0.

On error, it returns -1. The global variable ferrno is set to indicate the error
condition encountered.

See Also fopendir

200

CipherLab C Programming Part I

fcopy 8200, 8400, 8700

Purpose To copy a file.

Syntax int fclosedir (const char *srcfile, const char *dstfile);

Parameters const char *srcfile

Pointer to a buffer where the filename of the source file is stored.

const char *dstfile

Pointer to a buffer where the filename of the destination file is stored.

Example int result;

result=fcopy(“A:\\myfile.bin”,“A:\\myfile2.bin”);

if(result!=0){

 printf(“fcopy failed.\n”);

}

Return Value If successful, it returns 0.

On error, it returns -1. The global variable ferrno is set to indicate the error
condition encountered.

Remarks This routine copies one file to another. If the destination file already exists, this
routine returns with error. The filename must be given in full path and follow
8.3 format.

feof 8200, 8400, 8700

Purpose To check whether or not the file pointer reaches the end-of-file (eof) position.

Syntax int feof (int fd);

Parameters int fd

File handle of the target file.

Example int fd,c;

fd = fopen(“A:\\myfile.bin”,“rb”);

while (!feof(fd)) {

 c = fgetc(fd);

}

Return Value If EOF is reached, it returns a non-zero value.

If EOF is not reached, it returns 0.

See Also clearerr

 201

 Chapter 2 Mobile-Specific Function Library

fflush 8200, 8400, 8700

Purpose To flush the output buffer associated with a file opened for buffered I/O. This
will cause any remaining data in the output buffer written to the file.

Syntax int fflush (int fd);

Parameters int fd

File handle of the target file.

Example int fd;

char buf[]=”test”;

fopen(“A:\\myfile.bin”,“wb”);

fwrite(buffer, 1, 4, fd);

fflush(fd);

Return Value If successful, it returns 0.

On error, it returns -1. The global variable ferrno is set to indicate the error
condition encountered.

See Also fclose

fformat 8200, 8400, 8700

Purpose To create a file system on SD card.

Syntax int fformat (void);

Example if (fformat()!= 0)

 printf(“Format failed!\n”);

Return Value If successful, it returns 0.

On error, it returns a non-zero value. The global variable ferrno is set to
indicate the error condition encountered.

Remarks This routine creates a file system based on the size of the SD card. If the card
size is smaller or equals to 2GB, it creates FAT file system; otherwise, it
creates FAT32 file system

See Also fopendir, freaddir

202

CipherLab C Programming Part I

fgetc 8200, 8400, 8700

Purpose To read one character from a file opened for buffered input.

Syntax int fgetc (int fd);

Parameters int fd

File handle of the target file.

Example int fd;

int c;

fd = fopen(“A:\\myfile.bin”,“rb”);

while (!feof(fd)) {

 c = fgetc(fd);

}

Return Value If successful, it returns the character read from the buffer.

On error, it returns -1.

 Call ferror() and feof() to determine if there was an error or the file simply
reached its end.

Remarks This routine reads a character from the current position of the file, and then
increments this position. The character is returned as an integer.

See Also fgets, fputc, fputs

fgetinfo 8200, 8400, 8700

Purpose To read file or directory information.

Syntax int fgetinfo (const char *filename, FILEINFO *fileinfo);

Parameters const char *filename

Pointer to a buffer where the filename of the target file or directory is stored.
The filename must be given in full path and follow 8.3 format.

FILEINFO *fileinfo

Pointer to FILEINFO structure, which is defined in the header file 8200lib.h,
8400lib.h or 8700lib.h.

Example FILEINFO fileinfo;

if (fgetinfo(“A:\\myfile.bin”, &fileinfo) == 0) {

 printf(“file size:%d”, fileinfo.fsize);

}

Return Value If successful, it returns 0.

On error, it returns -1. The global variable ferrno is set to indicate the error
condition encountered.

See Also fopen, fopendir

 203

 Chapter 2 Mobile-Specific Function Library

fgetpos 8200, 8400, 8700

Purpose To get and save the current read/write position of a file.

Syntax int fgetpos (int fd, unsigned long *position);

Parameters int fd

File handle of the target file.

unsigned long *position

Pointer to a buffer where the current position of the file is returned.

Example int fd,c;;

unsigned long position;

fd = fopen(“A:\\myfile.bin”, “rb”);

c = fgetc(fd);

if (fgetpos(fd, &position) == 0)

 printf(“position:%ld”, position);

Return Value If successful, it returns 0.

On error, it returns a non-zero value. The global variable ferrno is set to
indicate the error condition encountered.

Remarks This routine fills position with a value representing the current position of the
file.

See Also fsetpos

204

CipherLab C Programming Part I

fgets 8200, 8400, 8700

Purpose To read a line from a file opened for buffered input. This line is read until a
newline (\n) character is encountered or until the number of characters reaches
the specified maximum.

Syntax char *fgets (char *string, int max_char, int fd);

Parameters char *string

Pointer to a buffer where the string is stored (by character).

int max_char

The maximum number of characters to be stored.

int fd

File handle of the target file.

Example int fd;

char string [81];

fd = fopen(“A:\\myfile.bin”, “r”);

if(fgets(string, 80, fd) != 0)

printf(“%s\n”, string);

Return Value If successful, it returns the pointer string.

On error, it returns 0.

 Call ferror() and feof() to determine if there was an error or the file simply
reached its end.

Remarks This routine reads at most one less than the number of characters specified by
max_char from the file into the buffer pointed to by string. No additional
characters are read after the newline character (which is retained). A null
character is written immediately after the last character read into the buffer.

See Also fgetc, fputc, fputs

 205

 Chapter 2 Mobile-Specific Function Library

fopen 8200, 8400, 8700

Purpose To open or create a file for buffered input and output operations.

Syntax int fopen (const char *filename, const char *mode);

Parameters const char *filename

Pointer to a buffer where the filename of the file to be opened is stored. The
filename must be given in full path and follow 8.3 format.

const char *mode

Type of access permitted:

“r”

“w”

“a”

“rb”

“wb”

“ab”

“r+”

“w+”

“a+”

“r+b”

“w+b”

“a+b”

Open for reading in text mode.

Create or truncate for writing in text mode.

Append in text mode. (open/create for writing at EOF)

Open for reading in binary mode.

Create or truncate for writing in binary mode.

Append in binary mode. (open/create for writing at EOF)

Open for reading and writing in text mode.

Create or truncate for reading and writing in text mode.

Open/create for reading and appending in text mode.

Open for reading and writing in binary mode.

Create or truncate for reading and writing in binary mode.

Open/create for reading and appending in binary mode.

Example int fd;

if ((fd = fopen(“A:\\myfile.bin”, “rb”)) == 0) {

 printf(“fail to open a file.\n”);

}

Return Value If successful, it returns the file handle.

On error, it returns 0. The global variable ferrno is set to indicate the error
condition encountered.

Remarks This routine opens the file specified by the argument filename. The mode string
specifies the type of access requested. If the operation succeeds, it returns a
file handle of the file.

 Up to 32 files can be opened at the same time. However, it is suggested
that you close a file whenever it is no longer desired; otherwise, file
handles may be depleted. (ferrno: E_NO_AVAILABLE_HANDLE)

 If the argument filename includes a subdirectory, the specified subdirectory
must exist; or an error is returned.

 In binary mode, your program can access every byte in the file. In text
mode, ‘\r’ is filtered out when reading a file and extra ‘\r’ is added before
‘\n’ when writing a file.

See Also Fclose

206

CipherLab C Programming Part I

fopendir 8200, 8400, 8700

Purpose To open an existing directory.

Syntax int fopendir (const char *dirname);

Parameters const char *dirname

Pointer to a buffer where the name of directory to be opened is stored.

Example if (fopendir(“A:\\SubDir”) == 0)

 printf(“Fail to open a directory.\r”);

Return Value If successful, it returns the directory handle.

On error, it returns 0. The global variable ferrno is set to indicate the error
condition encountered.

Remarks This routine opens an existing directory specified by the argument dirname.
The directory name must be given in full path and follow 8.3 format.

 Up to 3 directories can be opened at the same time. However, it is
suggested that you close a directory whenever it is no longer desired;
otherwise, directory handles may be depleted. (ferrno:
E_NO_AVAILABLE_HANDLE)

 If the argument dirname includes a subdirectory, the specified subdirectory
must exist; or an error is returned.

See Also fclosedir, fformat, freaddir

fputc 8200, 8400, 8700

Purpose To write one character to a file opened for buffered output.

Syntax int fputc (int c, int fd);

Parameters int c

The character to be written.

int fd

File handle of the target file.

Example int fd,c;

fd = fopen(“A:\\myfile.bin”,“wb”);

for(c=’A’;c<’Z’;c++){

 fputc(c,fd);

}

fclose(fd);

Return Value If successful, it returns the character written.

On error, it returns -1.

 Call ferror() to determine the error condition encountered.

Remarks This routine writes a character given in the argument c to the file in the current
position and then increments this position after writing the character.

See Also fgetc, fgets, fputs

 207

 Chapter 2 Mobile-Specific Function Library

fputs 8200, 8400, 8700

Purpose To write a null-terminated string to a file opened for buffered output.

Syntax int fputs (const char *string, int fd);

Parameters const char *string

Pointer to a buffer where the null-terminated string is stored.

int fd

File handle of the target file.

Example int fd;

char buffer [81] = “Testing the function fputs”;

fd = fopen(“A:\\myfile.bin”, “wb”);

fputs(buffer, fd);

fclose(fd);

Return Value If successful, it returns the number of characters written.

On error, it returns -1.

 Call ferror() to determine the error condition encountered.

Remarks This routine writes a string given in the argument string to the file in the
current position and then increments this position after writing the character.

See Also fgetc, fgets, fputc

208

CipherLab C Programming Part I

fread 8200, 8400, 8700

Purpose To read a specified number of data items, each of a given size, from the
current position in a file opened for buffered input.

Syntax int fread (void *buffer, int size, int count, int fd);

Parameters void *buffer

Pointer to a buffer where data is stored.

int size

Size in bytes of each data item.

int count

The maximum number of items to be read.

int fd

File handle of the target file.

Example int fd;

char buffer[81];

int count;

fd = fopen(“A:\\myfile.bin”, “rb”);

count = fread(buffer, 1, 80, fd);

printf(“Read %d characters\n”, count);

Return Value It returns the number of items actually read from the file.

 If the number of items read is not equal to count, call ferror() and feof() to
determine if there was an error or the file simply reached its end.

Remarks The number of items returned will be equal to count unless EOF is reached or
an error occurs. After the read operation is complete, the current position will
be updated.

See Also fwrite

 209

 Chapter 2 Mobile-Specific Function Library

freaddir 8200, 8400, 8700

Purpose To read directory entries in sequence.

Syntax int freaddir (int dir_handle, FILEINFO *fileinfo) ;

Parameters int dir_handle

File handle of the target directory.

FILEINFO *fileinfo

Pointer to FILEINFO structure, which is defined in the header file 8200lib.h,
8400lib.h or 8700lib.h.

Example FILEINFO finfo;

int dir_handle;

dir_handle = fopendir(“A:\\SubDir”);

if ((freaddir(dir_handle, &finfo) == 0) &&finfo.fname[0]) {

 printf(“File Name is %s”, finfo.fname);

}

Return Value If successful, it returns 0.

On error, it returns a non-zero value. The global variable ferrno is set to
indicate the error condition encountered.

Remarks This routine reads directory entries in sequence, and all items in the directory
can be read by calling freaddir routine repeatedly. When all directory items
have been read and no item to read, the routine returns a null string into
fileinfo.fname without any error.

See Also fformat, fopendir

fremove 8200, 8400, 8700

Purpose To delete a file.

Syntax int fremove (const char *filename);

Parameters const char *filename

Pointer to a buffer where the filename of the file to be deleted is stored. The
filename must be given in full path and follow 8.3 format.

Example int result;

result=fremove(“A:\\myfile.bin”);

if(result!=0){

 printf(“fail to remove a file\n”);

}

Return Value If successful, it returns 0.

On error, it returns a non-zero value. The global variable ferrno is set to
indicate the error condition encountered.

Remarks This routine deletes the file specified by the argument filename. The filename
must include the subdirectory if there is any, such as “A:\\Dir\\File”.

See Also frename, rmdir

210

CipherLab C Programming Part I

frename 8200, 8400, 8700

Purpose To rename (or move) an existing file or directory.

Syntax int frename (const char *oldname, const char *newname);

Parameters const char *oldname

Pointer to a buffer where the old filename of the file is stored.

const char *newname

Pointer to a buffer where the new filename of the file is stored.

Example Int result

result=frename(“A:\\myfile.bin”, “A:\\myfile2.bin”);

if(result!=0){

 printf(“fail to rename a file.\n”);

}

Return Value If successful, it returns 0.

On error, it returns a non-zero value. The global variable ferrno is set to
indicate the error condition encountered.

Remarks This routine changes the filename from oldname to newname. By changing the
directory, it also allows moving the file to a different directory. The filename
must be given in full path and follow 8.3 format.

See Also fremove, mkdir, rmdir

fscan 8200, 8400, 8700

Purpose To update the information about free memory on SD card.

Syntax int fscan (void);

Example if (fscan() != 0){

printf(“fscan fail\r\n”);

}

Return Value If successful, it returns 0.

On error, it returns -1. The global variable ferrno is set to indicate the error
condition encountered.

Remarks Some card has inaccurate information about free memory, resulting in failure
to get the correct return value of ffreebyte(). This routine scans the card to
update such information. The process might take some time to complete
scanning and updating.

 211

 Chapter 2 Mobile-Specific Function Library

fseek 8200, 8400, 8700

Purpose To reposition the file pointer.

Syntax int fseek (int fd, long offset, int origin);

Parameters int fd

File handle of the target file.

long offset

Offset of new position (in bytes) from origin.

int origin

File position from which to add offset:

SEEK_SET (1)

SEEK_CUR (0)

SEEK_END (-1)

Offset from the beginning of the file.

Offset from the current position of the file pointer.

Offset from the end of the file.

Example int fd;

fd =fopen(“A:\\myfile.bin”,”rb”);

if (fseek(fd, 30L, SEEK_SET) != 0)

 printf(“fseek failed!\n”);

Return Value If successful, it returns 0.

On error, it returns a non-zero value. The global variable ferrno is set to
indicate the error condition encountered.

Remarks This routine repositions the file_pointer by seeking a number of bytes (offset)
from the given position (origin). If the file is opened in text mode, offset should
be 0 or the value returned by ftell().

See Also ftell

212

CipherLab C Programming Part I

fsetpos 8200, 8400, 8700

Purpose To set the position where reading or writing can take place in a file opened for
buffered I/O.

Syntax int fsetpos (int fd, const unsigned long *newposition);

Parameters int fd

File handle of the target file.

const unsigned long *newposition

Pointer to a buffer where the new position of the file is stored.

Example int fd;

unsigned long curpos;

fd =fopen(“A:\\myfile.bin”,”rb”);

curpos=10;

if (fsetpos(fd, &curpos) != 0){

 printf(“fsetpos failed.\n”);

}

Return Value If successful, it returns 0.

On error, it returns a non-zero value. The global variable ferrno is set to
indicate the error condition encountered.

Remarks This routine sets the file pointer of the opened file to a new position
newposition.

See Also fgetpos

ftell 8200, 8400, 8700

Purpose To get the current file pointer position.

Syntax long ftell (int fd);

Parameters int fd

File handle of the target file.

Example int fd;

long curpos;

fd =fopen("A:\\myfile.bin","rb");

if ((curpos = ftell(fd)) == -1L)

 printf(“ftell failed!”);

Return Value If successful, it returns a long integer containing the number of bytes for the
offset from the beginning of the file to the current position.

On error, it returns -1L. The global variable ferrno is set to indicate the error
condition encountered.

Remarks This routine returns the current read/write position of the file.

See Also fseek

 213

 Chapter 2 Mobile-Specific Function Library

ftruncate 8200, 8400, 8700

Purpose To truncate a file from the current file pointer.

Syntax int ftruncate (int fd);

Parameters int fd

File handle of the target file.

Example int fd,result;

fd = fopen(“A:\\ myfile.bin”, “wb”);

fseek(fd, 10, SEEK_SET);

result=ftruncate(fd); //truncate file size to 10 bytes

if(result!=0){

 printf(“ftruncate failed.\n”);

}

fclose(fd);

Return Value If successful, it returns 0.

On error, it returns -1. The global variable ferrno is set to indicate the error
condition encountered.

Remarks Use fseek() to position the file pointer where you want to truncate a file from.

See Also fseek

fwrite 8200, 8400, 8700

Purpose To write a specified number of data items, each of a given size, from a buffer
to the current position in a file opened for buffered output.

Syntax int fwrite (const void *buffer, int size, int count, int fd);

Parameters const void *buffer

Pointer to a buffer where data is stored.

int size

Size in bytes of each data item.

int count

The maximum number of items to be written.

int fd

File handle of the target file.

Example int fd;

char buffer [81] = “Testing the fwrite function”;

int count;

fd = fopen(“A:\\myfile.bin”, “wb”)

count = fwrite(buffer, 1, 20, fd);

printf(“%d characters written to a file\n”, count);

fclose(fd);

214

CipherLab C Programming Part I

Return Value It returns the number of items actually written to the file.

If the number of items written is not equal to count, call ferror() to determine if
there was an error.

Remarks The number of items returned will be equal to count unless an error occurs.
After the write operation is complete, the current position will be updated.

See Also fread

mkdir 8200, 8400, 8700

Purpose To create a new directory.

Syntax int mkdir (const char *newdir);

Parameters const char *newdir

Pointer to a buffer where the name of directory to be created is stored.

Example if (mkdir(“A:\\SubDir”) != 0)

 printf(“Fail to create a directory.”);

Return Value If successful, it returns 0.

On error, it returns a non-zero value. The global variable ferrno is set to
indicate the error condition encountered.

Remarks This routine creates a new directory specified by the argument newdir. The
directory name must be given in full path and follow 8.3 format.

See Also rmdir

rmdir 8200, 8400, 8700

Purpose To delete a directory.

Syntax int rmdir (const char *dir);

Parameters const char *dir

Pointer to a buffer where the name of directory to be deleted is stored.

Example if (rmdir(“A:\\SubDir”) != 0)

 printf(“Fail to delete a directory.”);

Return Value If successful, it returns 0.

On error, it returns a non-zero value. The global variable ferrno is set to
indicate the error condition encountered.

Remarks This routine deletes the directory specified by the argument dir from the file
system. The dir must include the subdirectory if there is any, such as
“A:\\SubDir1\\SubDir2”. The directory must be empty; otherwise, an error is
returned for it cannot be removed. An attempt to remove the root directory
also returns an error.

See Also fremove, mkdir

 215

 Chapter 2 Mobile-Specific Function Library

2.16.6 MASS STORAGE DEVICE

When mass storage is in use, (1) all opened files will be closed automatically and (2) if
any of the functions in 2.16.5 SD Card Manipulation is called before close_com(5), the
error code E_SD_OCCUPIED is returned to indicate the SD card is currently occupied as
mass storage device.

GetMassStorageStatus 8200, 8400, 8700

Purpose To get the status when mass storage is in use.

Syntax int GetMassStorageStatus (void);

Example int status;

status = GetMassStorageStatus();

if (status&0x1){

printf(“USB is connected”);

}

else {

printf(“USB is disconnected”);

}

Return Value An integer is returned, summing up values of each item, to indicate the current
status.

Remarks Each bit indicates a certain item as shown below.

Bit Return Value

0 0: USB is disconnected

1: USB is connected

1 0: Device is not being accessed

1: Device is being accessed

See Also SetCommType

216

CipherLab C Programming Part I

2.16.7 ERROR CODE

For most SD-related functions, the global variable ferrno is set to indicate the error
condition encountered. For example,

fd = fopen(“A:\\file1”, “rb”);

if(!fd){

printf(“%d”,ferrno);

}

For information on the condition encountered, refer to the Error Code list in ferror().
Alternatively, you may call ferror() to access the error code after performing read/write
operation to a file.

Using ferrno
fwrite (X, X, X, fd1);

error1 = ferrno

fwrite (X, X, X, fd2);

error2 = ferrno

After executing an SD-related function, the global variable ferrno will be updated accordingly.
Therefore, in the example above error1 and error2 may be different.

Using ferror()
fwrite (X, X, X, fd1);

error1 = ferror (fd1);

fwrite (X, X, X, fd2);

error2 = ferror (fd2);

error1 = ferror (fd1);

After executing a function related to read/write operation to a file, the value you get by calling
ferror() is the same as the one ferrno holds. The only difference is the value returned by
ferror() will not be updated until executing a function related to read/write operation to the
same file. Therefore, in the example above the first error1 and the second error1 are exactly the
same.

 217

 Chapter 2 Mobile-Specific Function Library

clearerr 8200, 8400, 8700

Purpose To reset the error code of a file.

Syntax void clearerr (int fd) ;

Parameters int fd

File handle of the target file.

Example int fd;

fd = fopen (“A:\\myfile.bin”, “wb”);

if(fgetc(fd)==-1){

printf(“error code:%d”,ferror(fd));

clearerr(fd);

}

Return Value None

Remarks This routine sets the error code to zero.

218

CipherLab C Programming Part I

ferror 8200, 8400, 8700

Purpose To check whether or not an error has occurred during a previous read/write
operation on a file.

Syntax int ferror (int fd) ;

Parameters int fd

File handle of the target file.

Example int fd;

fd = fopen (“A:\\myfile.bin”, “wb”);

if(fgetc(fd)==-1){

printf(“error code:%d”,ferror(fd));

}

Return Value If any error occurred, it returns the error code.

Otherwise, it returns 0.

Error Code Meaning

E_SD_NOT_READY(1)

E_NO_FILESYSTEM(2)

E_NO_OBJECT(3)

E_NO_PATH(4)

E_NOT_DIR(5)

E_NOT_FILE(6)

E_DIR_NOT_EMPTY(7)

E_INVALID_NAME(8)

E_INVALID_OBJECT(9)

E_READ_ONLY(10)

E_ACCESS_DENIED(11)

E_OBJECT_EXIST(12)

E_DISK_FULL(13)

E_RW_ERROR(14)

E_INVALID_HANDLE(15)

E_NO_AVAILABLE_HANDLE(16)

E_INVALID_MODE(17)

E_SD_OCCUPIED(18)

SD is not ready

Unsupported File System

Can’t find object

Can’t find path

Not a directory

Not a file

Directory is not empty

Invalid Name

Object is not properly opened

Object’s attribute is read-only

Access doesn’t match open method

Object already exists

Disk is full

Sector read/write error

Invalid Handle

Unavailable Handle

Invalid mode character

SD is being used by USB Mass Storage

Remarks You may call ferror() to access the error code for fgetc(), fgets(), fputc(),
fputs(), fread() and fwrite().

 219

 Chapter 2 Mobile-Specific Function Library

2.17 GRAPHICAL USER INTERFACE

For 8700 Series, it supports Graphical User Interface (GUI) programming.

Include File

All programs that call GUI routines need to contain the following include statement.

#include <8xxxlib.h>

#include <8xGUI.h>

This header file “8xGUI.h” contains the function prototypes (declarations) and error code
definitions. These files should normally be placed under the “include” directory of the C compiler -
C:\C_Compiler\INCLUDE\

Library File

Any GUI application written in C language requires a number of libraries specific to 8700:

Mobile Computer 8700

GUI Library 8xGUI.lib

Standard Library 8700lib.lib

 Version 1.00
or later

These files should be specified in the linker file of the user program. The linker program will search
for the GUI routines during linking process. These files should normally be placed under the “lib”
directory of the C compiler — C:\C_Compiler\LIB\

An extern array GUIVersion[9], which is declared in the header file “8xGUI.h”, keeps version
information of GUI library.

Link File

Below is an example of link file (partial).

/*** Link File ***/

 -lm -lg -ll

 tnet.rel

 8xGUI.lib

 8700lib.lib

 c900ml.lib

Note: The library files must be in the above sequence. That is, “8xGUI.lib” must be
specified first, then “8xxxlib.lib”, and finally the standard C library file “c900ml.lib”.

220

CipherLab C Programming Part I

2.17.1 TEXT CENTER ALIGNEMENT

gui_TouchScreenCenterStr 8700

Purpose To center the text of a specific row or line.

Syntax void gui_TouchScreenCenterStr (int row, char *string, int mode) ;

Parameters int row

Specify which row to display the text.

 For FONT_6X8, the value can be 0, 1, 2, and so on.

 For FONT_8X16, which takes 2 rows, the value can be 1, 3, 5, and so on.

char *string

Pointer to a buffer where the text is stored.

int mode

0 VIDEO_NORMAL Display in normal mode

1 VIDEO_REVERSE Display in reverse mode

Example gui_TouchScreenCenterStr(3, (char*) "Order & Delivery", VIDEO_NORMAL);

gui_TouchScreenPrintScreenLines(2, 4);

Return Value None

Remarks Here is an example screenshot, where the subtitle “Order & Delivery” is
displayed in normal mode with hashed background created by
TouchScreenPrintScreenLines().

Text, center-aligned, with
hashed background

 221

 Chapter 2 Mobile-Specific Function Library

2.17.2 TITLE

gui_TouchScreenPrintTitle 8700

Purpose To create a title in a specific row or line.

Syntax void gui_TouchScreenPrintTitle (int row, char *title, int icon);

Parameters int row

Specify which row to display the title.

 The text wil be centered automatically.

 Only FONT_8X16 in reverse mode is supported, and the value can be 1, 3,
5, and so on.

char *title

Pointer to a buffer where the title is stored.

int icon

0 NO_ICON No icon

1 ICON_INFO Show the Information icon

2 ICON_CLOSE Show the Close icon

Example gui_TouchScreenPrintTitle(1, (char*) "MAIN FORM", ICON_INFO);

Return Value None

Remarks Here is an example screenshot for a title with the Information icon:

The icon is always displayed
on the upper-right corner.

222

CipherLab C Programming Part I

2.17.3 BACKGROUND

gui_TouchScreenPrintScreenLines 8700

Purpose To create hashed background.

Syntax void gui_TouchScreenPrintScreenLines (int startRow, int endRow);

Parameters int startRow

Specify the first row for applying hashed background.

int endRow

Specify the last row for applying hashed background.

Example gui_TouchScreenCenterStr(3, (char*) "Order & Delivery", VIDEO_NORMAL);

gui_TouchScreenPrintScreenLines(2, 4);

Return Value None

Remarks Use TouchScreenPrintScreenLines() after printf() is called.

Here is an example screenshot, where the subtitle “Order & Delivery” is
displayed in normal mode with hashed background.

startRow
 endRow

 223

 Chapter 2 Mobile-Specific Function Library

2.17.4 FORM OR DIALOG

gui_TouchScreenActivateForm 8700

Purpose To create and activate a blank form or dialog.

Syntax void gui_TouchScreenActivateForm (int y_dot, int height, char *title, int
icon, int button_type);

Parameters int y_dot

Specify the y coordinate of the upper left corner of the form, in dots.
However, it is suggested that the value of y_dot should be divisible by 8
because the row to display the title is “(y_dot / 8) +1”.

int height

Specify height of the form, in dots.

char *title

Pointer to a buffer where the title is stored.

int icon

0 NO_ICON No icon

1 ICON_INFO Show the Information icon

2 ICON_CLOSE Show the Close icon

int button_type

Specify which button(s) to be displayed on the bottom row.

1 DIALOG_OK Show the OK button

2 DIALOG_OKCANCEL Show the OK and CANCEL buttons

3 DIALOG_YESNO Show the YES and NO buttons

4 DIALOG_NEXT Show the NEXT button

5 DIALOG_NEXTPREV Show the NEXT and PREV buttons

6 DIALOG_PREVDONE Show the PREV and DONE buttons

7 DIALOG_DONE Show the DONE button

9 DIALOG_ICONONLY No button, but the Close icon is required.

11 DIALOG_USERDEF Show user-defined button(s).

Refer to 2.17.20 S_Button Structure.

Example gui_TouchScreenActivateForm(0, 152, (char*)"MAIN FORM", ICON_INFO,
DIALOG_NEXTPREV);

while(1)

{

if (getchar() == KEY_ESC)

 break;

i = GetScreenItem((void*)&CompiledTouchButtons,

 nCompiledTouchButtons, ITEM_REVERSE);

224

CipherLab C Programming Part I

 if (i == 1) // PREV button

{

}

else if (i == 2) // NEXT button

{

}

else if (i == 3) // INFO button

{

}

OSTimeDly(4);

}

gui_TouchScreenDisableForm();

Return Value None

Remarks A form or a dialog is considered to have a titile bar on top and button(s) on
bottom. A title bar, whose text wil be centered automatically, may have an icon
displayed on the upper-right corner.

When being activated, touchable “graphic items” (icon or buttons) will be
defined automatically through the data structure ItemProperty. Two global
variables extern ItemProperty CompiledTouchButtons[70] and extern int
nCompiledTouchButtons are defined, and GetScreenItem(ItemProperty
CompiledTouchButtons[70], nCompiledTouchButtons, mode) must be called to
detect whether the icon or a button is touched or pressed.

The item number of each graphic item is assigned accordingly when it is
activated (the best practice is from left to right and top to bottom), and the
icon on the title bar is always the last one. Refer to 2.12 Touch Screen.

 Here are some example screenshots.

y_dot

height

 (0) (1) (2) (3) (4)
Sequence of Item Number Returned by GetScreenItem()

 225

 Chapter 2 Mobile-Specific Function Library

gui_TouchScreenDisableForm 8700

Purpose To disable the form or dialog.

Syntax void gui_TouchScreenDisableForm (void);

Return Value None

Remarks The form or dialog will stop responding with users.

Icon

Title

Button(s)

(2)

 (0) (1)
Sequence of Item Number Returned by GetScreenItem()

226

CipherLab C Programming Part I

2.17.5 FIELD SETTINGS

gui_TouchScreenDefineField 8700

Purpose To specify the properties of an input field or all.

Syntax void gui_TouchScreenDefineField (int field_index, int field_type, int
display_mode, int font, int column, int row, int max_len, char *initial_value,
char *input_mark);

Parameters int field_index

Specify the field by index, 0~6.

0 FORMFIELD_1

1 FORMFIELD_2

2 FORMFIELD_3

3 FORMFIELD_4

4 FORMFIELD_5

5 FORMFIELD_6

6 FORMFIELD_ALL

int field_type

Specify which data type is allowed for field input.

1 FIELDTYPE_INTEGER Accpets 0~9 and the minus sign.

2 FIELDTYPE_UINTEGER Accpets 0~9 only.

3 FIELDTYPE_FLOAT Accpets 0~9, decimal point and the minus
sign.

4 FIELDTYPE_UFLOAT Accpets 0~9 and decimal point only.

5 FIELDTYPE_STRING Accpets 0~9 and all printable characters
except for the following:?+-/*\.,;:#$

int display_mode

0 VIDEO_NORMAL Normal mode in use

1 VIDEO_REVERSE Reverse mode in use

int font

1 FONT_6X8

2 FONT_8X16

int column

Specify the x coordinate of the upper left corner of the field.

int row

Specify the y coordinate of the upper left corner of the field.

int max_len

Specify the maximum length allowed for field input.

 227

 Chapter 2 Mobile-Specific Function Library

 char *initial_value

Pointer to a buffer where the initial value or text is stored. The cursor position
will be shifted accordingly. For example, you may specify “US$” as the initial
value and input data starting from the 4th-character position.

char *input_mark

Pointer to a buffer where the input mark is stored. By default, the character
“_” (underline) is in use. The number of input marks shown in the field equals
to the maximum length allowed for input. It is to be replaced by input data.

Example gui_TouchScreenDefineField(
FORMFIELD_1, FIELDTYPE_STRING, VIDEO_NORMAL, FONT_8X16, 7, 5, 11,
(char*)"16/07/2010", NULL);

gui_TouchScreenDefineField(
FORMFIELD_2, FIELDTYPE_INTEGER, VIDEO_NORMAL, FONT_8X16, 7, 7, 11,
(char*)"", NULL);

Return Value None

Remarks Each set of field definition will be saved to S_FormField FormFieldCollection[6].
Refer to 2.17.21 S_FormField Structure.

Here is an example screenshot, where the prompt strings are “Date:” and
“Order#:”, and you may specify “16/07/2010” as the initial value of the Date
field.

However, you may treat the initial value as a prompt string. In a different
design for the same screenshot shown above, the initial value of the 1st field is
“ Date:16/07/2010”, and “Order#:” for the 2nd field. The initial value cannot
be modified unless the input focus is moved to the area where it is. For
example, you may activate the area of “16/07/2010_” to allow changes made
to the initial value. Alternatively, you may call gui_TouchScreenSetFieldFocus()
in your code to move the input focus.

(column, row)

228

CipherLab C Programming Part I

gui_TouchScreenClearField 8700

Purpose To clear data of a specifc input field, or reset all input fields to defaults.

Syntax void gui_TouchScreenClearField (int field_index);

Parameters int field_index

Specify the field by index, 0~6.

0 FORMFIELD_1 Clear data of a specifc input field.

1 FORMFIELD_2

2 FORMFIELD_3

3 FORMFIELD_4

4 FORMFIELD_5

5 FORMFIELD_6

6 FORMFIELD_ALL Reset all input fields to defaults.

Example gui_TouchScreenClearField(FORMFIELD_ALL);

Return Value None

Remarks Refer to 2.17.21 S_FormField Structure for S_FormField FormFieldCollection[].

 229

 Chapter 2 Mobile-Specific Function Library

gui_TouchScreenFieldInput 8700

Purpose To display the input character in the field, one at a time.

Syntax int gui_TouchScreenFieldInput (int field_index, int password, char key) ;

Parameters int field_index

Specify the field by index, 0~5.

0 FORMFIELD_1

1 FORMFIELD_2

2 FORMFIELD_3

3 FORMFIELD_4

4 FORMFIELD_5

5 FORMFIELD_6

int password

Specify whether to use asterisk to display each character input.

0 FALSE Show input

1 TRUE Show asterisk

char key

Specify the ASCII character. Call gui_TouchScreenGetCharFromSWKeypad()
to get the ASCII character for the key that has been touched or pressed when
input comes from the software keypad.

Return Value If successful, it returns 1.

On error, it returns 0.

Remarks Call this routine until it displays all the input characters in the field. It will save
any input character to FormFieldCollection[field_index].InputData, and if not
followed by a keystroke of [Backspace], the input character will be output to
the screen.

230

CipherLab C Programming Part I

gui_TouchScreenSetFieldFocus 8700

Purpose To move the input focus to a specific field.

Syntax void gui_TouchScreenSetFieldFocus (int field_index);

Parameters int field_index

Specify the field by index, 0~5.

0 FORMFIELD_1

1 FORMFIELD_2

2 FORMFIELD_3

3 FORMFIELD_4

4 FORMFIELD_5

5 FORMFIELD_6

Example gui_TouchScreenSetFieldFocus(FORMFIELD_2);

Return Value None

Remarks The field will be ready to accept input. If data already exists in the field, the
input focus will be in the last position. Otherwise, the input focus is in the first
position.

Alphanumeric characters are allowed when data type for field input is set to
FIELDTYPE_STRING. For other data types, only numeric characters are allowed.

 231

 Chapter 2 Mobile-Specific Function Library

2.17.6 INPUT FIELD

gui_TouchScreenActivateField 8700

Purpose To create and activate the responsive area of a whole field, or of a partial
section of the field.

Syntax void gui_TouchScreenActivateField (int field_index, int startColumn, int
endColumn);

Parameters int field_index

Specify the field by index, 0~5.

0 FORMFIELD_1

1 FORMFIELD_2

2 FORMFIELD_3

3 FORMFIELD_4

4 FORMFIELD_5

5 FORMFIELD_6

int startColumn

Specify from which column the responsive area starts.

int endColumn

Specify from which column the responsive area ends.

Example gui_TouchScreenDefineField(
FORMFIELD_1, FIELDTYPE_STRING, VIDEO_NORMAL, FONT_8X16, 7, 5, 11,
(char*)"16/07/2010", NULL);

gui_TouchScreenDefineField(
FORMFIELD_2, FIELDTYPE_INTEGER, VIDEO_NORMAL, FONT_8X16, 7, 7, 11,
(char*)"", NULL);

gotoxy(0, 5);

clr_eol();

printf(" Date:");

gui_TouchScreenActivateField(FORMFIELD_1, 7, 17);

gotoxy(0, 7);

clr_eol();

printf("Order#:");

gui_TouchScreenActivateField(FORMFIELD_2, 7, 17);

gui_TouchScreenSetFieldFocus(FORMFIELD_2);

while(1)

{

if (getchar() == KEY_ESC)

break;

i = GetScreenItem((void*)&CompiledTouchButtons,

 nCompiledTouchButtons, ITEM_REVERSE);

232

CipherLab C Programming Part I

 if (i == 1) // FORMFIELD_1

{

}

else if (i == 2) // FORMFIELD_2

{

}

OSTimeDly(4);

}

Return Value None

Remarks An input field must be defined before use. Refer to 2.17.5 Field Settings.

When being activated, touchable “graphic items” (icon or buttons) will be
defined automatically through the data structure ItemProperty. Two global
variables extern ItemProperty CompiledTouchButtons[70] and extern int
nCompiledTouchButtons are defined, and GetScreenItem(ItemProperty
CompiledTouchButtons[70], nCompiledTouchButtons, mode) must be called to
detect whether the icon or a button is touched or pressed.

The item number of each graphic item is assigned accordingly when it is
activated (the best practice is from left to right and top to bottom), and the
icon on the title bar is always the last one. Refer to 2.12 Touch Screen.

Here is an example screenshot.

endColumn

Whole field
 Partially activated

startColumn

 233

 Chapter 2 Mobile-Specific Function Library

gui_TouchScreenDisableField 8700

Purpose To disable a specific field.

Syntax void gui_TouchScreenDisableField (int field_index);

Parameters int field_index

Specify the field by index, 0~5.

0 FORMFIELD_1

1 FORMFIELD_2

2 FORMFIELD_3

3 FORMFIELD_4

4 FORMFIELD_5

5 FORMFIELD_6

Example gui_TouchScreenDisableField(FORMFIELD_1);

Return Value None

Remarks The field will stop responding with users.

234

CipherLab C Programming Part I

2.17.7 TOUCHPAD

gui_TouchScreenActivateSWKeypad 8700

Purpose To create and activate the touchpad (software keypad).

Syntax void gui_TouchScreenActivateSWKeypad (int yDot) ;

Parameters int yDot

Specify the y coordinate of the upper left corner of the row the touchpad is
displayed, in dots.

Example gui_TouchScreenDisableField(FORMFIELD_1);

gui_TouchScreenDisableField(FORMFIELD_2);

TKB_MODE = 0;

TKBShiftState = 0;

gui_TouchScreenActivateSWKeypad(80);

while (1)

{

i = cKey = 0;

i = GetScreenItem((void*)&CompiledTouchButtons,

 nCompiledTouchButtons, ITEM_REVERSE);

if (i > 0)

 cKey = gui_TouchScreenGetCharFromSWKeypad (…); (i, TKB_MODE);

else if (kbhit() > 0)

 cKey = getchar();

if (cKey = KEY_ESC)

 break;

if (cKey > 0)

{

 gui_TouchScreenFieldInput(FORMFIELD_2, FALSE, cKey);

 gui_TouchScreenActivateField(FORMFIELD_2, 7, 17);

}

OSTimeDly(4);

}

Return Value None

Remarks The two global variables TKB_MODE and TKBShiftState are used to specify the
keypad type:

TKB_MODE TKBShiftState

0 Lower-case (Default) 0 Shift off, CAPS off

1 Shift/CAPS keyboard 1 Shift on, CAPS off

2 Reserved 2 Shift off, CAPS on

 235

 Chapter 2 Mobile-Specific Function Library

 3 Reserved 3 Shift on, CAPS on

4 Numeric keyboard

There are three different layout options:

(1) Lower-case (Default) (2) Shift/CAPS keyboard

(3) Numeric keyboard

When being activated, touchable “graphic items” (keys or buttons here) will be
defined automatically through the data structure ItemProperty. Two global
variables extern ItemProperty CompiledTouchButtons[70] and extern int
nCompiledTouchButtons are defined, and GetScreenItem(ItemProperty
CompiledTouchButtons[70], nCompiledTouchButtons, mode) must be called to
detect which key is touched or pressed.

The item number of each graphic item is assigned accordingly when it is
activated (the best practice is from left to right and top to bottom), and the
icon on the title bar is always the last one. Refer to Refer to 2.12 Touch
Screen. Also, gui_TouchScreenGetCharFromSWKeypad() must be called to get
the ASCII character for the key that has been touched or pressed.

Here is an example screenshot.

Touchpad in a form

y_dot

Lower-case
(default)

236

CipherLab C Programming Part I

gui_TouchScreenDisableSWKeypad 8700

Purpose To disable the touchpad.

Syntax void gui_TouchScreenDisableSWKeypad (void) ;

Return Value None

Remarks The touchpad will stop responding with users.

 237

 Chapter 2 Mobile-Specific Function Library

2.17.8 GET CHARACTER FOR SOFT KEY

gui_TouchScreenGetCharFromSWKeypad 8700

Purpose To get the ASCII character for the key that has been pressed on the touchpad.

Syntax char gui_TouchScreenGetCharFromSWKeypad (int itemNumber, int
mode_TKB);

Parameters int itemNumber

Specify the item number returned by GetScreenItem().

int mode_TKB

Specify the keypad layout.

0 Lower-case (Default)

1 Shift/CAPS keyboard

2 Symbols lower keyboard

3 Reserved

4 Numeric keyboard

Example cKey = GetCharFromTouchKey(i, TKB_MODE);

Return Value If successful, it returns the ASCII character for the key.

Remarks When being activated, touchable “graphic items” (keys or buttons here) will be
defined automatically through the data structure ItemProperty. Two global
variables extern ItemProperty CompiledTouchButtons[70] and extern int
nCompiledTouchButtons are defined, and GetScreenItem(ItemProperty
CompiledTouchButtons[70], nCompiledTouchButtons, mode) must be called to
detect which key is touched or pressed.

238

CipherLab C Programming Part I

2.17.9 FIELD WITH TOUCHPAD

gui_TouchScreenActivateFieldTouchPad 8700

Purpose To create and activate an input field with touchpad.

Syntax char gui_TouchScreenActivateFieldTouchPad (int row, char *title, int
field_index, int password);

Parameters int row

Specify from which row the touchpad is displayed.

char *title

Pointer to a buffer where the title of touchpad is stored.

int field_index

Specify the field by index, 0~5.

0 FORMFIELD_1

1 FORMFIELD_2

2 FORMFIELD_3

3 FORMFIELD_4

4 FORMFIELD_5

5 FORMFIELD_6

int password

Specify whether to use asterisk to display each character input.

0 FALSE Show input

1 TRUE Show asterisk

Example gui_TouchScreenClearField(FORMFIELD_ALL);

gui_TouchScreenDefineField(
FORMFIELD_1, FIELDTYPE_STRING, VIDEO_NORMAL, FONT_8X16, 7, 5, 11,
(char*)"16/07/2010", NULL);

gui_TouchScreenDefineField(
FORMFIELD_2, FIELDTYPE_INTEGER, VIDEO_NORMAL, FONT_8X16, 7, 7, 11,
(char*)"", NULL);

gotoxy(0, 5);

clr_eol();

printf(" Date:");

gui_TouchScreenActivateField(FORMFIELD_1, 7, 17);

gotoxy(0, 7);

clr_eol();

printf("Order#:");

gui_TouchScreenActivateField(FORMFIELD_2, 7, 17);

gui_TouchScreenSetFieldFocus(FORMFIELD_2);

 239

 Chapter 2 Mobile-Specific Function Library

 while(1)

{

if (getchar() == KEY_ESC)

break;

i = GetScreenItem((void*)&CompiledTouchButtons,

 nCompiledTouchButtons, ITEM_REVERSE);

if (i == 1) // FORMFIELD_1

{

}

else if (i == 2) // FORMFIELD_2

{

 cTouchKey = gui_TouchScreenActivteFieldTouchPad(9, (char*)

 "TOUCHPAD", FORMFIELD_2, FALSE);

 if (cTouchKey == KEY_CR)

 {

 }

 else if (cTouchKey == KEY_ESC)

 {

 }

}

OSTimeDly(4);

}

Return Value Return Value

KEY_CR One of the following is detected:

 The ENTER button of the touchpad has been
pressed.

 The ENTER key on the physical keypad has been
pressed.

KEY_ESC One of the following is detected:

 The Close icon on the touchpad has been pressed.

 The ESC key on the physical keypad has been
pressed.

Remarks An input field must be defined before use. Refer to 2.17.5 Field Settings.

Keypad type is dcecided by the two global variables TKB_MODE and
TKBShiftState. Refer to 2.17.7 Touchpad.

240

CipherLab C Programming Part I

 Here is an example screenshot.

gui_TouchScreenDisableFieldTouchPad 8700

Purpose To disable the touchpad for field input.

Syntax void gui_TouchScreenDisableFieldTouchPad (void);

Return Value None

Remarks The touchpad will stop responding with users.

Field with touchpad enabled
automatically

 241

 Chapter 2 Mobile-Specific Function Library

2.17.10 MULTI-LINE INPUT (TEXT BOX) WITH TOUCHPAD

gui_TouchScreenActivateTextBoxInput 8700

Purpose To create and activate a multiple-line input area with touchpad.

Syntax char gui_TouchScreenActivateTextBoxInput (char *title, char *message,
char *return_string, int max_return_bytes) ;

Parameters char *title

Pointer to a buffer where the title is stored.

 Only FONT_8X16 is supported, and it takes two lines.
char *message

Pointer to a buffer where the message is stored.

 Only FONT_6X8 is supported, and it takes two lines. To display a two-line
message, use a carriage return (\r) between lines.

char *return_string

Pointer to an array, where the input data is stored.

int max_return_bytes

Specify the maximum length allowed for input, which equals to
[sizeof(*return_string)] and cannot exceed 256 bytes.

Example char szNoteBuf[256] = {0};

gui_TouchScreenActivateTextBoxInput((char*)"Input Box",
(char*)"Other information", (char*)szNoteBuf, sizeof(szNoteBuf)-1);

Return Value Return Value

KEY_ESC One of the following is detected:

 The DONE button on the touchpad has been pressed.

 The ESC key on the physical keypad has been pressed.

Remarks The text box is used to input multiple lines and accepts string type only.

 Scroll through text: Tap the arrow buttons to scroll. Alternatively, press the
Up/Down keys on the physical keypad.

 Start a new line of text: Tap the ENTER button on the touchpad or pressed
the ENTER key on the physical keypad.

Keypad type is dcecided by the two global variables TKB_MODE and
TKBShiftState. Refer to 2.17.7 Touchpad.

Here is an example screenshot.

Message

FONT_6X8

Lines 1, 2
 Lines 3, 4

242

CipherLab C Programming Part I

gui_TouchScreenDisableTextBoxInput 8700

Purpose To disable the touchpad for multiple-line input.

Syntax void gui_TouchScreenDisableTextBoxInput (void) ;

Return Value None

Remarks The touchpad will stop responding with users.

 243

 Chapter 2 Mobile-Specific Function Library

2.17.11 SIGNATURE BOX

gui_TouchScreenActivateSignatureBox 8700

Purpose To create and activate a signature box.

Syntax int gui_TouchScreenActivateSignatureBox (char *title, char *message,
int flip) ;

Parameters char *title

Pointer to a buffer where the title is stored.

 Only FONT_8X16 is supported, and it takes two lines.
char *message

Pointer to a buffer where the message is stored.

 Only FONT_6X8 is supported, and it takes two lines. To display a two-line
message, use a carriage return (\r) between lines.

int flip

0 FALSE Do not flip the screen

1 TRUE Flip the screen (= 180 degrees)

Return Value If successful, it returns a key value used to identify the signature data.

On error, it returns -1.

Remarks The signature box is used for accepting a signature.

 Save and exit the process: Tap the OK button or press the ENTER key on
the physical keypad.

 Clear the boxt: Tap the CLEAR button or pressed the ESC key on the
physical keypad.

It will save a signature to the DBF file “SIGNEDDB”, and each record takes a
total of 1883 bytes (= 1880 bytes for signature data + 3 bytes for key value).

The key number of the IDX file is 1. To get the signature data, call
has_member() and get_member(). Refer to 2.15.7 DBF Files and IDX Files for
details on the DBF and IDX files.

Here is an example screenshot.

Message

Input area

Lines 1, 2
 Lines 3, 4

244

CipherLab C Programming Part I

 The input area is as shown below.

 Input area for normal display: (0, 39) ~ (160, 132)

 Input area when the screen is flipped: (0, 19) ~ (160, 112)

gui_TouchScreenDisableSignatureBox 8700

Purpose To disable the signature box.

Syntax void gui_TouchScreenDisableSignatureBox (void) ;

Return Value None

Remarks The signature box will stop responding with users.

(0, 19)

(160, 112)

(0, 39)

(160, 132)

 245

 Chapter 2 Mobile-Specific Function Library

2.17.12 TAB LIST

Tabs provide a way to present releated information on separate labelled pages.

gui_TouchScreenActivateTabList 8700

Purpose To create and activate a tab list.

Syntax char gui_TouchScreenActivateTabList (char *title, char *caption_tab1,
char *caption_tab2, int button_type, int * return_tab1, int * return_tab2,
char (*list_tab1)[20], int max_items_tab1, char (*list_tab2)[20], int
max_items_tab2, int font_tab1, int font_tab2);

Parameters char *title

Pointer to a buffer where the title is stored.

 Only FONT_8X16 is supported, and it takes two lines.
char *caption_tab1, *caption_tab2

Pointer to a buffer where the caption for each tab is stored.

 Only FONT_8X16 is supported, and it takes two lines.

int button_type

Specify which button(s) to be displayed on the bottom row.

1 DIALOG_OK Show the OK button

2 DIALOG_OKCANCEL Show the OK and CANCEL buttons

3 DIALOG_YESNO Show the YES and NO buttons

4 DIALOG_NEXT Show the NEXT button

5 DIALOG_NEXTPREV Show the NEXT and PREV buttons

6 DIALOG_PREVDONE Show the PREV and DONE buttons

7 DIALOG_DONE Show the DONE button

9 DIALOG_ICONONLY No button, but the Close icon is required.

11 DIALOG_USERDEF Show user-defined button(s).

Refer to 2.17.20 S_Button Structure.

int *return_tab1, * return_tab2

Pointer to a buffer where the initial and selected item value for each tab is
stored. But if the value is set to 0, items on the tab are inactive and none is
highlighted for selection.

char (*list_tab1)[20], (*list_tab2)[20]

Pointer to an array [r][20], where all the items for each tab are stored.

int max_items_tab1, max_items_tab2

Specify the maximum number of items (≤ r) allowed for each tab.

246

CipherLab C Programming Part I

 Int font_tab1, font_tab2

1 FONT_6X8

2 FONT_8X16

Example char szTab1List[11][20], szTab2List[22][20];

strcpy(szTab1List[0], "8000/8001");

strcpy(szTab1List[1], "8300");

strcpy(szTab1List[2], "8400");

strcpy(szTab1List[3], "8500");

strcpy(szTab1List[4], "8700");

strcpy(szTab1List[5], "8060/8070");

strcpy(szTab1List[6], "8360/8370");

strcpy(szTab2List[0], "CipherLab Co., Ltd ");

strcpy(szTab2List[1], "12F, 333 Dunhua S. ");

strcpy(szTab2List[2], "Rd., Sec.2, Taipei,");

strcpy(szTab2List[3], "Taiwan 106 ");

strcpy(szTab2List[4], "TEL:+886-2-86471166");

strcpy(szTab2List[5], "FAX:+886-2-87322255");

iTab1Sel = 1;

iTab2Sel = 0;

iTouchTAB = gui_TouchScreenActivateTabList((char*)"INFORMATION",
(char*)"Item List", (char*)"Address", DIALOG_OKCANCEL, &iTab1Sel,
&iTab2Sel, szTab1List, 7, szTab2List, 6, FONT_6X8, FONT_8X16);

Return Value Return Value

KEY_CR One of the following is detected:

 The right button of the form has been pressed.

 The ENTER key on the physical keypad has been
pressed.

KEY_ESC One of the following is detected:

 The left button of the form has been pressed.

 The ESC key on the physical keypad has been
pressed.

ButtonReturnKey User-defined button has been pressed.

Remarks The tab list is used to display lists.

 Select a tab: Tap it or press the Left/Right keys on the physical keypad to
select.

 Scroll through the list: Tap the arrow buttons or drag-and-drop the thumb
to scroll. Alternatively, press the Up/Down keys on the physical keypad.

 Select a highlighted item: Tap the OK button of the form or press the
ENTER key on the physical keypad.

 247

 Chapter 2 Mobile-Specific Function Library

  Exit the process: Tap the button(s). When two buttons are present, the
user may press the ENTER or ESC key on the physical keypad instead.
(Right button = ENTER; left button = ESC)

Here are some example screenshots.

gui_TouchScreenDisableTabList 8700

Purpose To disable the tab list.

Syntax void gui_TouchScreenDisableTabList (void) ;

Return Value None

Remarks The tab list will stop responding with users.

Tab2

Caption

Items

Lines 1, 2

Lines 5, 6

Tab1

248

CipherLab C Programming Part I

2.17.13 LIST BOX

gui_TouchScreenActivateListBox 8700

Purpose To create and activate a list box.

Syntax char gui_TouchScreenActivateListBox (char *title, char *message, char
*items, int *return_value, int button_type, int font) ;

Parameters char *title

Pointer to a buffer where the title is stored.

 Only FONT_8X16 is supported, and it takes two lines.
Char *message

Pointer to a buffer where the message is stored.

 Only FONT_6X8 is supported, and it takes three lines.

char *items

Pointer to a buffer where all the list items are stored.

 Use a carriage return (\r) to separate items.

int *return_value

Pointer to a buffer where the initial and selected item value is stored.

int button_type

Specify which button(s) to be displayed on the bottom row.

1 DIALOG_OK Show the OK button

2 DIALOG_OKCANCEL Show the OK and CANCEL buttons

3 DIALOG_YESNO Show the YES and NO buttons

4 DIALOG_NEXT Show the NEXT button

5 DIALOG_NEXTPREV Show the NEXT and PREV buttons

6 DIALOG_PREVDONE Show the PREV and DONE buttons

7 DIALOG_DONE Show the DONE button

9 DIALOG_ICONONLY No button, but the Close icon is required.

11 DIALOG_USERDEF Show user-defined button(s).

Refer to 2.17.20 S_Button Structure.

int font

1 FONT_6X8

2 FONT_8X16

Example int iChoice = 1; char cChoice;

char szChoiceItems[]=

{"Order System\rItem2\rItem3\rItem4\rItem5\rItem6\rItem7\rItem8"};

cChoice = gui_TouchScreenActivateListBox((char*)"CHOICE BOX",
(char*)"Select an operation system from below listing", (char
*)szChoiceItems, &iChoice, DIALOG_PREVDONE, FONT_8X16);

 249

 Chapter 2 Mobile-Specific Function Library

 if(cChoice==KEY_CR)

{

}

else if(cChoice==KEY_ESC)

{

}

Return Value Return Value

KEY_CR One of the following is detected:

 The right button of the form has been pressed.

 The ENTER key on the physical keypad has been
pressed.

KEY_ESC One of the following is detected:

 The left button of the form has been pressed.

 The ESC key on the physical keypad has been
pressed.

ButtonReturnKey User-defined button has been pressed.

Remarks The list box is used to displays up to 5 items on one page.

 Browse the list: Press the Up/Down keys on the physical keypad to browse
the list.

 Exit the process: Tap the button(s). When two buttons are present, the
user may press the ENTER or ESC key on the physical keypad instead.
(Right button = ENTER; left button = ESC)

Here are some example screenshots.

Items

Lines 3~5

Lines 1, 2

Lines 6~10

Lines 7~11

250

CipherLab C Programming Part I

gui_TouchScreenDisableListBox 8700

Purpose To disable the list box.

Syntax void gui_TouchScreenDisableListBox (void);

Return Value None

Remarks The list box will stop responding with users.

 251

 Chapter 2 Mobile-Specific Function Library

2.17.14 COMBO LIST

gui_TouchScreenActivateComboList 8700

Purpose To create and activate a combo list.

Syntax int gui_TouchScreenActivateComboList (char *title, char *message,
S_MenuData *data, int *return_value, int button_type, int font);

Parameters char *title

Pointer to a buffer where the title is stored.

 Only FONT_8X16 is supported, and it takes two lines.
Char *message

Pointer to a buffer where the message is stored.

 Only FONT_6X8 is supported, and it takes two lines.

S_MenuData *data

User-defined array [sizeof(S_MenuData)] where up to 10 menu items are
stored. Refer to 2.17.22 S_MenuData Structure.

int *return_value

Pointer to a buffer where the initial and selected item value is stored.

int button_type

Specify which button(s) to be displayed on the bottom row.

1 DIALOG_OK Show the OK button

2 DIALOG_OKCANCEL Show the OK and CANCEL buttons

3 DIALOG_YESNO Show the YES and NO buttons

4 DIALOG_NEXT Show the NEXT button

5 DIALOG_NEXTPREV Show the NEXT and PREV buttons

6 DIALOG_PREVDONE Show the PREV and DONE buttons

7 DIALOG_DONE Show the DONE button

9 DIALOG_ICONONLY No button, but the Close icon is required.

11 DIALOG_USERDEF Show user-defined button(s).

Refer to 2.17.20 S_Button Structure.

int font

1 FONT_6X8 Up to 10 items can be displayed.

2 FONT_8X16 Up to 5 items can be displayed.

Example int iComboSel = 1;

char szDropDown1[sizeof(S_MenuData)];

S_MenuData* comboData = (S_MenuData*) &szDropDown1;

memset(szDropDown1, 0x00, sizeof(szDropDown1));

comboData->ShowCaption = FALSE;

252

CipherLab C Programming Part I

 strcpy(comboData->Item[0], (char*) "8 Series");

comboData->ItemReturnKey[0] = '1';

strcpy(comboData->Item[1], (char*) "9 Series");

comboData->ItemReturnKey[1] = '2';

strcpy(comboData->Item[2], (char*) "Fixed Terminal");

comboData->ItemReturnKey[2] = '3';

strcpy(comboData->Item[3], (char*) "Scanner");

comboData->ItemReturnKey[3] = '4';

strcpy(comboData->Item[4], (char*) "Accessories");

comboData->ItemReturnKey[4] = '5';

gui_TouchScreenActivateComboList((char *)"ComboList", (char *)"Choice
one item you want\rfrom the listing table", comboData, &iComboSel,
DIALOG_OKCANCEL, FONT_8X16);

Return Value Return Value

KEY_CR One of the following is detected:

 The right button of the form has been pressed.

 The ENTER key on the physical keypad has been
pressed.

KEY_ESC One of the following is detected:

 The left button of the form has been pressed.

 The ESC key on the physical keypad has been
pressed.

ButtonReturnKey User-defined button has been pressed.

Remarks The combo list is used to display up to 10 menu items.

 Exit the process: Tap the button(s). When two buttons are present, the
user may press the ENTER or ESC key on the physical keypad instead.
(Right button = ENTER; left button = ESC)

Here are some example screenshots.

(x, y)

FONT_6X8

 253

 Chapter 2 Mobile-Specific Function Library

gui_TouchScreenDisableComboList 8700

Purpose To disable a combo list.

Syntax void gui_TouchScreenDisableComboList (int xDot, int yDot, S_MenuData
*data, int *return_value, int font);

Return Value None

Remarks The combo list will stop responding with users.

FONT_8X16

(x, y)

254

CipherLab C Programming Part I

2.17.15 POP-UP MENU

gui_TouchScreenActivatePopUpMenu 8700

Purpose To create and activate a pop-up menu.

Syntax char gui_TouchScreenActivatePopUpMenu (int column, int row,
S_MenuData * data, int font);

Parameters int column

Specify the x coordinate of the upper left corner of the pop-up menu.

int row

Specify the y coordinate of the upper left corner of the pop-up menu.

S_MenuData *data

User-defined array [sizeof(S_MenuData)] where up to 10 menu items are
stored. Refer to 2.17.22 S_MenuData Structure.

int font

1 FONT_6X8 Up to 10 items can be displayed.

2 FONT_8X16 Up to 7 items can be displayed.

Example char szInfoListingMenu[sizeof(S_MenuData)];

S_MenuData* infoData = (S_MenuData*) &szInfoListingMenu;

memset(szInfoListingMenu, 0x00, sizeof(szInfoListingMenu));

strcpy(infoData->Caption, (char*)"INFORMATION MENU");

infoData->ShowCaption = TRUE;

strcpy(infoData->Item[0], (char*)"F1 = Show Info Menu";

infoData->ItemReturnKey[0] = KEY_F1;

strcpy(infoData->Item[1], (char*)"F2 = Show Touchpad");

infoData->ItemReturnKey[1] = KEY_F2;

strcpy(infoData->Item[2], (char*)"F3 = Show Datebox");

infoData->ItemReturnKey[2] = KEY_F3;

strcpy(infoData->Item[3], (char*)"F4 = System Info");

infoData->ItemReturnKey[3] = KEY_F4;

strcpy(infoData->Item[4], (char*)"F5 = File Transmission");

infoData->ItemReturnKey[4] = KEY_F5;

strcpy(infoData->Item[5], (char*)"F6 = Exit Info Menu");

infoData->ItemReturnKey[5] = KEY_F6;

cKey = gui_TouchScreenActivatePopUpMenu(-1, -1, (S_MenuData*)
&szInfoListingMenu, FONT_6X8);

switch (cKey)

{

 case KEY_F1:

 break;

 255

 Chapter 2 Mobile-Specific Function Library

 case KEY_F2:

 break;

 .

 .

 .

 case KEY_F6:

 break;

 default:

 break;

}

Return Value Return Value

KEY_ESC One of the following is detected:

 The menu caption has been pressed.

 The ESC key on the physical keypad has been
pressed.

ItemReturnKey Return value for each item, if any.

Remarks Normally, the pop-menu is displayed starting at the coordinates (column, row).
But if both vaues are set to -1, it will be center-aligned automatically.

 Scroll through the pop-menu: Press the Up/Down keys on the physical
keypad.

 Select a highlighted item: Press the ENTER key on the physical keypad.

Here are some example screenshots.

FONT_6X8

FONT_8X16

256

CipherLab C Programming Part I

gui_TouchScreenDisablePopUpMenu 8700

Purpose To disable the pop-up menu.

Syntax void gui_TouchScreenDisablePopUpMenu (void);

Return Value None

Remarks The pop-up menu will stop responding with users.

 257

 Chapter 2 Mobile-Specific Function Library

2.17.16 MESSAGE BOX

gui_TouchScreenShowMsgBox 8700

Purpose To create and activate a message box.

Syntax char gui_TouchScreenShowMsgBox (char *title, char *message, int beep,
int vibrate, int button_type, int font);

Parameters char *title

Pointer to a buffer where the title is stored.

 Only font size 8x16 is supported, and its position is line 7.
char *message

Pointer to a buffer where t the message is stored.

 FONT_6X8 and FONT_8X16 are supported, and its position is line 9~13.
Use a carriage return (\r) between lines.

int beep

Speficy whether to enable the beep when a message is received.

1 BEEP_SUCCESS

2 BEEP_TRYAGAIN

3 BEEP_FAIL

4 BEEP_ERROR

5 BEEP_KEYCLICK

6 BEEP_PLUSONE

int vibrate

Specify whether to vibrate when a message is received.

0 FALSE Do not vibrate

1 TRUE Vibrate

int button_type

Specify which button(s) to be displayed on the bottom row, or for how long
the message box is displayed.

1 DIALOG_OK Show the OK button

2 DIALOG_OKCANCEL Show the OK and CANCEL buttons

3 DIALOG_YESNO Show the YES and NO buttons

8 DIALOG_3SECONDS Show the message for 3 seconds.

10 DIALOG_1SECOND Show the message for 1 second.

int font

1 FONT_6X8

2 FONT_8X16

258

CipherLab C Programming Part I

Return Value Return Value

KEY_CR One of the following is detected:

 The right button of the message box has been
pressed.

 The OK button of the message box has been
pressed.

 The ENTER key on the physical keypad has been
pressed.

KEY_ESC One of the following is detected:

 The left button of the message box has been
pressed.

 The ESC key on the physical keypad has been
pressed.

0 The message is shown for a specified period of time.

 button_type = DIALOG_3SECONDS

 button_type = DIALOG_1SECOND

Remarks The message box is used to display a hint or message on top of a form.

 Exit the process: Tap the button(s). When two buttons are present, the
user may press the ENTER or ESC key on the physical keypad instead.
(Right button = ENTER; left button = ESC)

Here are some example screenshots.

Title

When a message is received, it will
automatically apply hashed background
to the form, except for the button(s)
on the bottom of the form.

 259

 Chapter 2 Mobile-Specific Function Library

2.17.17 MEMO BOX

gui_TouchScreenShowMemoBox 8700

Purpose To create and activate a memo box.

Syntax void gui_TouchScreenShowMemoBox (char *title, char *message, int
font);

Parameters char *title

Pointer to a buffer where the title is stored.

 Only FONT_8X16 is supported, and it takes two lines.
char *message

Pointer to a buffer where t the message is stored.

 FONT_6X8 and FONT_8X16 are supported. To display multiple lines, use a
carriage return (\r) between lines.

 The maximum length is 255.

int font

1 FONT_6X8

2 FONT_8X16

Return Value None

Remarks The memo box is used to display a multiple-line message.

 Scroll through the text: Tap the arrow buttons or drag-and-drop the thumb
to scroll. Alternatively, press the Up/Down keys on the physical keypad.

 Exit the process: Tap the button. The user may press the ENTER or ESC
key on the physical keypad instead.

Here are some example screenshots.

FONT8X16

Lines 1, 2

FONT6X8

260

CipherLab C Programming Part I

2.17.18 CALENDAR

gui_TouchScreenActivateCalendar 8700

Purpose To create and activate a calendar.

Syntax char gui_TouchScreenActivateCalendar (char *title, char *return_value,
int button_type);

Parameters char *title

Pointer to a buffer where the title is stored.

 Only font size 8x16 is supported, and its position is line 1.
char *return_value

Pointer to a buffer where the selected date is stored.

 Date format is DD/MM/YYYY (= 10 bytes)

int button_type

Specify which button(s) to be displayed on the bottom row.

1 DIALOG_OK Show the OK button

2 DIALOG_OKCANCEL Show the OK and CANCEL buttons

3 DIALOG_YESNO Show the YES and NO buttons

4 DIALOG_NEXT Show the NEXT button

5 DIALOG_NEXTPREV Show the NEXT and PREV buttons

6 DIALOG_PREVDONE Show the PREV and DONE buttons

7 DIALOG_DONE Show the DONE button

9 DIALOG_ICONONLY No button, but the Close icon is required.

11 DIALOG_USERDEF Show user-defined button(s).

Refer to 2.17.20 S_Button Structure.

Return Value Return Value

KEY_CR One of the following is detected:

 The right button of the form has been pressed.

 The ENTER key on the physical keypad has been
pressed.

KEY_ESC One of the following is detected:

 The left button of the form has been pressed.

 The ESC key on the physical keypad has been
pressed.

ButtonReturnKey User-defined button has been pressed.

Remarks The initial value of the date is decided by the three global variables
iCurrentYear, iCurrentMonth and iCurrentDay.

 Select a date: Tap the arrow buttons to select YEAR, and then tap MONTH
and DAY. Alternatively, press the Up/Down keys on the physical keypad to
select among YEAR/MONTH/DAY. Then, press the Right/Left arrow keys to
select further.

 261

 Chapter 2 Mobile-Specific Function Library

  Exit the process: Tap the button(s). When two buttons are present, the
user may press the ENTER or ESC key on the physical keypad instead.
(Right button = ENTER; left button = ESC)

Here is an example screenshot.

gui_TouchScreenDisableCalendar 8700

Purpose To disable the calendar.

Syntax void gui_TouchScreenDisableCalendar (void);

Return Value None

Remarks The calendar will stop responding with users.

You may press the Up/Down keys on the
physical keypad to select among
YEAR/MONTH/DAY. Then, press the
Right/Left arrow keys to select
further.

262

CipherLab C Programming Part I

2.17.19 GRAPHICAL INFORMATION

gui_TouchScreenShowResourceInfo 8700

Purpose To display graphical information on system resource.

Syntax void gui_TouchScreenShowResourceInfo (void);

Return Value None

Remarks Here is an example screenshot.

 263

 Chapter 2 Mobile-Specific Function Library

2.17.20 S_BUTTON STRUCTURE

typedef struct {

int TotalButtons;

char ButtonLabel[5][27];

unsigned char ButtonReturnKey[5];

} S_Button;

The data structure is defined as shown below.

Item Description

int TotalButtons The amount of buttons to be displayed on the bottom of a
form or a dialog. Up to five buttons are allowed.

char ButtonLabel Label of each button

unsigned char ButtonReturnKey Return value of each button

Note that such user-defined return values can only be applied
to objects such as Tab List, List Box, Combo List and
Calendar.

Note: A global variable, extern S_Button* btnLabel, is declared in 8xGUI.h to govern the
properties of each user-defined button.

264

CipherLab C Programming Part I

2.17.21 S_FORMFIELD STRUCTURE

typedef struct {

int FieldType; // default = FIELDTYPE_INTEGER

int DisplayMode; // default = VIDEO_NORMAL

int Font; // default = FONT_8X16

int Origin_Column; // default = 0

int Origin_Row; // default = 0

int MaxLength; // default = 0

int CursorPosition; // default = 0

char InputMark[27]; // default = ‘_’

char InputData[27]; // default = 0

} S_FormField;

The data structure is defined as shown below.

Item Description

int FieldType Data type allowed for field input —

 FIELDTYPE_INTEGER: 0~9 and the minus sign

 FIELDTYPE_UINTEGER: 0~9 only

 FIELDTYPE_FLOAT: 0~9, decimal point and the minus
sign

 FIELDTYPE_UFLOAT: 0~9 and decimal point only

 FIELDTYPE_STRING: 0~9 and all printable characters
except for the following twelve characters ?+-/*\.,;:#$

int DisplayMode Display mode: Normal or Reverse

int Font Font size: FONT_6X8 or FONT_8X16

int Origin_Column X coordinate of the upper left corner of the field

int Origin_Row Y coordinate of the upper left corner of the field

int MaxLength Maximum length allowed for field input

int CursorPosition The cursor position starts after the initial value or text, if
there is any.

char InputMark[27] By default, the character “_” (underline) is in use. The
number of input marks shown in the field equals to the
maximum length allowed for input. It is to be replaced by
input data.

char InputData[27] Data input for a specific field

 265

 Chapter 2 Mobile-Specific Function Library

2.17.22 S_MENUDATA STRUCTURE

typedef struct {

char Caption[27];

char Item[10][27];

unsigned char ItemReturnKey[10];

unsigned char ShowCaption;

} S_MenuData;

The data structure is defined as shown below.

Item Description

char Caption[27] Menu caption (Not recommended for combo list.)

char Item[10][27] Menu items by sequence

unsigned char ItemReturnKey[10] Return value for each item

unsigned char ShowCaption 0: Do not show

1: Show caption (Not recommended for combo list.)

266

CipherLab C Programming Part I

 267

The standard library routines supported are categorized and listed below.

Input & Output: <stdio.h>

 File Operations: Not supported. Please use CipherLab Library routines.

 Formatted Output: Only sprintf is supported.

For formatted output to display, refer to CipherLab Library
“LCD”.

 Formatted Input: Only sscanf is supported.

 Character Input and Output: Not supported. Refer to CipherLab Library “Keypad”.

 Direct Input and Output: Not supported.

Input & Output: <stdio.h>

For each function, the argument is a character, whose value must be EOF or representable as an
unsigned char, and the return value is an integer.

The functions return non-zero (true) if the argument c satisfies the condition described;
otherwise, zero is returned.

 isalnum (c) isalpha (c) or isdigit (c) is true

 isalpha (c) isupper (c) or islower (c) is true

 iscntrl (c) control character

 isdigit (c) decimal digit

 isgraph (c) printing character except space

 islower (c) lower-case letter

 isprint (c) printing character including space

 ispunct (c) printing character except space, letter and digit

 isspace (c) space, formfeed, newline, carriage return, tab, vertical tab

 isupper (c) upper-case letter

 isxdigit (c) hexadecimal digit

In addition, there are two functions that convert the case of letters:

 int tolower (c) convert c to lower-case

 int toupper (c) convert c to upper-case

Chapter 3
STANDARD LIBRARY ROUTINES

268

CipherLab C Programming Part I

String Functions: <string.h>, Functions start with “str”

In this list, types of variables are as follows.

char *s;

const char *cs, ct;

size_t n;

int c;

 char *strcpy (s, ct) copy string ct to string s, including 0x00, return s

 char *strncpy (s, ct, n) copy at most n characters of string ct to s, return s, pad with
0x00s if ct has fewer than n characters

 char *strcat (s, ct) concatenate string ct to end of string s, return s

 char *strncat (s, ct, n) concatenate at most n characters of ct to s, return s

 int strcmp (cs, ct) compare string cs with ct, return valus < 0 if cs < ct; return =
0 if cs = ct; return > 0 if cs > ct

 int strncmp (cs, ct, n) compare at most n characters of string cs with ct, return valus
< 0 if cs < ct; return = 0 if cs = ct; return > 0 if cs > ct

 char *strchr (cs, c) return pointer to first occurrence of c in cs or NULL if not
present

 char *strrchr (cs, c) return pointer to last occurrence of c in cs or NULL if not
present

 size_t strspn (cs, ct) return length of prefix of cs consisting of characters in ct

 size_t strcspn (cs, ct) return length of prefix of cs consisting of characters not in ct

 char *strpbrk (cs, ct) return pointer to first occurrence in string cs of any character of
string ct, or NULL if none is present

 char *strstr (cs, ct) return pointer to first occurrence of string ct in cs, or NULL if
not present

 size_t strlen (cs) return length of string cs

 char *strtok (s, ct) search s for tokens delimited by characters from ct

 strcoll Not supported.

 strerror Not supported.

 269

 Chapter 3 Standard Library Routines

String Functions: <string.h>, Functions start with “mem”

In this list, types of variables are as follows.

void *s;

const void *cs, *ct;

size_t n;

int c;

 void *memcpy (s, ct, n) copy n characters from ct to s, return s

 void *memmove (s, ct, n) same as memcpy except that it works fine even if objects
overlap

 int memcmp (cs, ct, n) compare first n characters of cs with ct, return as strcmp

 void *memchr (cs, c, n) return pointer to first occurrence of character c in cs or NULL if
not present among first n characters

 void *memset (s, c, n) place character c into first n characters of s, return s

270

CipherLab C Programming Part I

Mathematical Functions: <math.h>

Mathematical functions are listed below. All of them return a value of double.

In this list, types of variables are as follows.

double x, y;

int n;

 sin (x) sine of x

 cos (x) cosine of x

 tan (x) tangent of x

 asin (x) arc sine of x, in the range [-π/2, π/2] radians, x ∈ [−1, 1].

 acos (x) arc cosine of x, in the range [0,π] radians, x ∈ [−1, 1].

 atan (x) arc tangent of x, in the range [-π/2, π/2] radians.

 atan2 (y, x) arc tangent of y/x, in the range [-π, π] radians.

 sinh (x) hyperbolic sine of x

 cosh (x) hyperbolic cosine of x

 tanh (x) hyperbolic tangent of x

 exp (x) base e raised to the power of x

 log (x) log(x), x > 0

 log10 (x) log to the base 10 of x, x > 0

 pow (x, y) x raised to the power y

 sqrt (x) square root of x

 ceil (x) the smallest integer no less than x

 floor (x) the largest integer not greater than x

 fabs (x) absolute value of x

 ldexp (x, n) x multiplied by 2 raised to the power of n

 frexp (x, int *exp) decompose x into two parts: a mantissa between 0.5 and 1
(returned by the function) and an exponent returned as exp.

Scientific notation works like this: x = mantissa * (2 ^ exp)

If x = 0, both parts of the result are zero.

 modf (x, double *ip) split x into its integer and fraction parts, each with the same
sign as x. Returns the fractional part and loads the integer part
into *ip.

 fmod (x, y) the remainder of x/y, with the same sign as x.

If y = 0, the result is implementation-defined.

 271

 Chapter 3 Standard Library Routines

Utility Functions: <stdlib.h>, Number Conversion

 double atof (const char *s) Convert s to double, equivalent to strtod
(s, (char **) NULL)

 int atoi (const char *s) Convert s to integer, equivalent to strtol
(s, (char **) NULL, 10)

 long atol (const char *s) Convert s to long,

equivalent to strtol (s, (char **) NULL, 10)

 double strtod (const char *s, char **endp) Convert the prefix of s to double

 long strtol (const char *s, char **endp, int base) Convert the prefix of s to long

 unsigned long strtoul (const char *s, char
**endp, int base)

Convert the prefix of s to unsigned long

 int rand (void) Return a random integer from 0 to 32,767

 void strand (unsigned int seed) seed for new pseudo-random generation

 void *bsearch() binary search

 void qsort() ascending sorts

 int abs (int n) integer absolute

 long labs (long n) long absolute

 div_t div (int num, int denom) integer division

 ldiv_t div (long num, long denom) long division

Utility Functions: <stdlib.h>, Storage Allocation

Not supported. Use the CipherLab library routines instead.

272

CipherLab C Programming Part I

Diagnostics: <assert.h>

Not supported.

Variable Argument Lists: <stdarg.h>

Functions for processing variable arguments are listed below.

va_start (va_list ap, lastarg)

type va_arg (va_list ap, type)

void va_end (va_list ap)

Non-Local Jumps: <setjmp.h>

Not supported.

Signals: <signal.h>

Not supported.

Time & Date Functions: <time.h>

Not supported.

Implementation-defined Limits: <limits.h>, <float.h>

Refer to limit.h and float.h.

 273

All the mobile computers come with a real-time kernel (µC/OS) that allows user to
generate a preemptive multi-tasking application. User can apply the real-time kernel
functions to split the application into multiple tasks that each task takes turns to gain the
access to the system resource by a priority-based schedule.

µC/OS applies the semaphore mechanism to control the access to the shared resource
for the multiple tasks. Generally, there are only three operations that can be performed
on a semaphore: CREATE, PEND, and POST. A semaphore is a key that the task has to
require so that it can continue execution. If a semaphore is already in use, the requesting
task is suspended until the semaphore is released by its current owner.

A task is an infinite loop function or a function which deletes itself when it is done
executing. Each task is assigned with an appropriate priority. The more important the
task is, the higher the priority given to it. µC/OS can manage up to 32 tasks (with
priority set from 0 to 31, the lower number, the higher priority) for the user program.
The main task, main(), takes priority 16.

A task desiring the semaphore will perform a PEND operation. A task releases the
semaphore by performing a POST operation. If there are several tasks on the pending list,
the task with highest priority waiting for the semaphore will receive the semaphore when
the semaphore is posted. The pending list of tasks is always initially empty.

Semaphores are often overused. Disabling and enabling interrupts could do the job more
efficiently. All real-time kernels will disable interrupts during critical sections of code. You
are thus basically allowed to disable interrupts for as much time as the kernel does
without affecting interrupt latency.

 Include File
#include <ucos.h>

This header file, “ucos.h”, contains the function prototypes (declarations) and error
code definitions. This file should normally be placed under the “include” directory of
the C compiler - C:\C_Compiler\INCLUDE\

The µC/OS related functions are discussed as follows.

Chapter 4
REAL-TIME KERNEL

274

CipherLab C Programming Part I

OS_ENTER_CRITICAL

Purpose To disable the processor's interrupt.

Syntax void OS_ENTER_CRITICAL (void);

Example OS_ENTER_CRITICAL();

/* user code */

OS_EXIT_CRITICAL();

Return Value None

Remarks A critical section of code is code that needs to be treated indivisibly. Once the
section of code starts executing, it must not be interrupted. To ensure this,
user can call this routine to disable interrupts prior to executing the critical
code, and then enable the interrupts when the critical code is done. This
function executes in about 5 CPU clock cycles.

 OS_ENTER_CRITICAL and OS_EXIT_CRITICAL must be used in pairs.

OS_EXIT_CRITICAL

Purpose To enable the processor's interrupt.

Syntax void OS_EXIT_CRITICAL (void);

Example OS_ENTER_CRITICAL();

/* user code */

OS_EXIT_CRITICAL();

Return Value None

Remarks This function executes in about 5 CPU clock cycles.

 OS_ENTER_CRITICAL and OS_EXIT_CRITICAL must be used in pairs.

 275

 Chapter 4 Real-Time Kernel

OSSemCreate

Purpose To create and initialize a semaphore.

Syntax OS_EVENT *OSSemCreate (unsigned value);

Parameters OS_EVENT, a data structure to maintain the state of an event called an Event
Control Block (ECB), is defined as below.

typedef struct os_event {

unsigned char OSEventGrp;

 // Group corresponding to tasks waiting for event to occur

unsigned char OSEventTbl[8];

 // List of tasks waiting for event to occur

long OSEventCnt;

 // Count of used when event is a semaphore

void *OSEventPtr;

 // Pointer to message or queue structure

} OS_EVENT;

unsigned value

The initial value of the semaphore, which is allowed to be between 0 and
32767.

Example DispSem = OSSemCreate(1); // create Display semaphore

Return Value A pointer to the event control block allocated to the semaphore.

If no event control blocks are available, a NULL pointer will be returned.

Remarks This function creates and initializes a semaphore. A semaphore is used to:

 Allow a task to synchronize with either an ISR or a task.

 Gain exclusive access to a resource.

 Signal the occurrence of an event.

Note that semaphores must be created before they are used. This function
cannot be called from an ISR.

276

CipherLab C Programming Part I

OSSemPend

Purpose To list a task on the pending list for the semaphore.

Syntax void OSSemPend (OS_Event *pevent, unsigned long timeout, unsigned
char *err);

Parameters OS_Event *pevent

Pointer to the semaphore. This pointer is returned to your application when
the semaphore is created.

unsigned long timeout

The maximum timeout can be 65535 clock ticks. It is used to allow the task to
resume execution if the semaphore is not acquired within the specified
number of clock ticks.

 A timeout value of 0 indicates that the task desires to wait forever for the
semaphore.

unsigned char *err

Pointer to a variable which will be sued to hold an error code.

OSSemPend sets *err to either:

 OS_NO_ERR, if the semaphore is available.

 OS_TIMEOUT, if a timeout occurred.

Example OSSemPend(DispSem, 0, &err);

Return Value None

Remarks This function is used when a task desires to gain exclusive access to a
resource, to synchronize its activities with an Interrupt Service Routine (ISR),
or to wait until an event occurs.

If a task calls OSSemPend() and the value of the semaphore is greater than
zero, then OSSemPend() will decrement the semaphore count and return to its
caller. However, if the value of the semaphore is less than or equal to zero,
OSSemPend() decrements the semaphore count and places the calling task in
the pending list for the semaphore. The task will thus wait until a task or an
ISR releases the semaphore or signals the occurrence of the event. In this
case, rescheduling occurs and the next highest priority task ready to run is
given control of the CPU. An optional timeout may be specified when pending
for a semaphore.

Note that semaphores must be created before they are used. This function
cannot be called from an ISR.

 277

 Chapter 4 Real-Time Kernel

OSSemPost

Purpose To signal the semaphore.

Syntax unsigned char OSSemPost (OS_Event *pevent);

Parameters OS_Event *pevent

Pointer to the semaphore. This pointer is returned to your application when
the semaphore is created.

Example err = OSSemPost(DispSem);

Return Value If successful, it returns OS_NO_ERR to indicate the semaphore is available.

Otherwise, it returns OS_TIMEOUT to indicate timeout occurred.

Remarks A semaphore is signaled by calling OSSemPost(). If the value of a semaphore
is greater than or equal to zero, the semaphore count is incremented and
OSSemPost() returns to its caller.

If the semaphore count is less than zero, then tasks are waiting for the
semaphore to be signaled. In this case, OSSemPost() removes the highest
priority task pending for the semaphore from the pending list and makes this
task ready to run. The scheduler is then called to determine if the awakened
task is now the highest priority task ready to run.

Note that semaphores must be created before they are used.

278

CipherLab C Programming Part I

OSTaskCreate

Purpose To create a task.

Syntax unsigned char OSTaskCreate (void (*task)(void *pd), void *pdata,
unsigned char *pstk, unsigned long stk_size, unsigned char prio);

Parameters void (*task)

Pointer to the task's code.

void *pdata

Pointer to an optional data area, which can be used to pass parameters to the
task when it is created.

unsigned char *pstk

Pointer to the task's top of stack. The stack is used to store local variables,
function parameters, return addresses, and CPU registers during an interrupt.

 The size of this stack is defined by the task requirements and the
anticipated interrupt nesting. Determining the size of the stack involves
knowing how many bytes are required for storage of local variables for
the task itself, all nested functions, as well as requirements for interrupts
(accounting for nesting).

unsigned char prio

The task priority. A unique priority number must be assigned to each task;
the lower the number, the higher the priority.

Example static unsigned char beep_stk[256];

OSTaskCreate(beep_task, (void *)0, beep_stk, 256, 10);

 // create a beep_task with priority 10

Return Value If successful, it returns OS_NO_ERR.

If the requested priority already exists, it returns OS_PRIO_EXIST.

Remarks This function allows an application to create a task. The task is managed by
µ/OS. Tasks can be created prior to the start of multitasking or by a running
task.

Note that a task cannot be created by an ISR.

 279

 Chapter 4 Real-Time Kernel

OSTaskDel

Purpose To delete a task.

Syntax unsigned char OSTaskDel (unsigned char prio);

Parameters unsigned char prio

The task priority. A unique priority number must be assigned to each task;
the lower the number, the higher the priority.

Example err = OSTaskDel(10); // delete a task with priority 10

Return Value If successful, it returns OS_NO_ERR.

If the task to be deleted does not exist, it returns OS_TASK_DEL_ERR.

If the task to be deleted is an idle task, it returns OS_TASK_DEL_IDLE.

Remarks This function allows user application to delete a task by specifying the priority
number of the task. The calling task can be deleted by specifying its own
priority number. The deleted task is returned to the dormant state. The deleted
task may be created to make the deleted task active again.

Note that an ISR cannot delete a task. This function will verify that you are not
attempting to delete the µ/OS's idle task.

OSTimeDly

Purpose To allow a task to delay itself for a number of clock ticks.

Syntax void OSTimeDly (unsigned long ticks);

Parameters unsigned long ticks

The number of clock ticks to delay the current task -

 Valid delays range from 1 to 65535 ticks.

 Calling this function with a delay of 0 results in delay infinitely.

For 8000/8200/8300/8400/8700 Series, the delay time in units of 1/200
second (= 5 milliseconds).

For 8500 Series, the delay time in units of 1/256 second.

Example OSTimeDly(10); // delay task for 50 ms on 8000/8300

Return Value None

Remarks This function allows a task to delay itself for a number of clock ticks.
Rescheduling always occurs when the number of clock ticks is greater than
zero.

Note that this function cannot be called from an ISR.

280

CipherLab C Programming Part I

 281

IN THIS CHAPTER

Symbology Parameter Table for CCD/LASER/Long Range Reader 281
Symbology Parameter Table for 2D/Extra Long Range Reader 290

SYMBOLOGY PARAMETER TABLE FOR CCD/LASER/LONG RANGE READER

SCANNERDESTBL[]

Byte Bit Description Default Scan Engine

0 7 1: Enable Code 39

0: Disable Code 39

1 CCD, Laser,
8700-Long
Range

 6 1: Enable Italian Pharmacode

0: Disable Italian Pharmacode

0 CCD, Laser,
8700-Long
Range

 5 1: Enable CIP 39 (French Pharmacode)

0: Disable CIP 39

0 CCD, Laser,
8700-Long
Range

 4 1: Enable Industrial 25

0: Disable Industrial 25

1 CCD, Laser,
8700-Long
Range

 3 1: Enable Interleaved 25

0: Disable Interleaved 25

1 CCD, Laser,
8700-Long
Range

 2 1: Enable Matrix 25

0: Disable Matrix 25

0 CCD, Laser,
8700-Long
Range

 1 1: Enable Codabar (NW7)

0: Disable Codabar (NW7)

1 CCD, Laser,
8700-Long
Range

 0 1: Enable Code 93

0: Disable Code 93

1 CCD, Laser,
8700-Long
Range

Appendix I
SCANNERDESTBL ARRAYS

282

CipherLab C Programming Part I

1 7 1: Enable Code 128 & EAN-128

0: Disable Code 128 & EAN-128

1 CCD, Laser,
8700-Long
Range

 6 1: Enable UPC-E

0: Disable UPC-E

1 CCD, Laser,
8700-Long
Range

 5 1: Enable UPC-E Addon 2

0: Disable UPC-E Addon 2

0 CCD, Laser,
8700-Long
Range

 4 1: Enable UPC-E Addon 5

0: Disable UPC-E Addon 5

0 CCD, Laser,
8700-Long
Range

 3 1: Enable EAN-8

0: Disable EAN-8

1 CCD, Laser,
8700-Long
Range

 2 1: Enable EAN-8 Addon 2

0: Disable EAN-8 Addon 2

0 CCD, Laser,
8700-Long
Range

 1 1: Enable EAN-8 Addon 5

0: Disable EAN-8 Addon 5

0 CCD, Laser,
8700-Long
Range

 0 1: Enable EAN-13 & UPC-A

0: Disable EAN-13 & UPC-A

1 CCD, Laser,
8700-Long
Range

2 7 1: Enable EAN-13 & UPC-A Addon 2

0: Disable EAN-13 & UPC-A Addon 2

0 CCD, Laser,
8700-Long
Range

 6 1: Enable EAN-13 & UPC-A Addon 5

0: Disable EAN-13 & UPC-A Addon 5

0 CCD, Laser,
8700-Long
Range

 5 1: Enable MSI

0: Disable MSI

0 CCD, Laser,
8700-Long
Range

 4 1: Enable Plessey

0: Disable Plessey

0 CCD, Laser,
8700-Long
Range

 3 1: Enable Coop 25

0: Disable Coop 25

0 CCD, Laser,
8700-Long
Range

Note: Coop 25 is not supported on 8500.

 2 1: Enable Telepen

0: Disable Telepen

0 CCD, Laser,
8700-Long
Range

 1 1: Enable original Telepen (= Numeric mode)

0: Disable original Telepen (= ASCII mode)

0 CCD, Laser,
8700-Long
Range

 283

 Appendix I ScannerDesTbl Array

 0 1: Enable GS1 DataBar Limited

0: Disable GS1 DataBar Limited

0 CCD, Laser,
8700-Long
Range

3 7 Reserved --- ---

 6 1: Enable GS1 DataBar Omnidirectional & GS1 DataBar
Expanded

0: Disable GS1 DataBar Omnidirectional & GS1 DataBar
Expanded

0 CCD, Laser,
8700-Long
Range

 5 1: Transmit GS1 DataBar Omnidirectional Code ID

0: DO NOT transmit GS1 DataBar Omnidirectional Code ID

1 CCD, Laser,
8700-Long
Range

 4 1: Transmit GS1 DataBar Omnidirectional Application ID

0: DO NOT transmit GS1 DataBar Omnidirectional
Application ID

1 CCD, Laser,
8700-Long
Range

 3 1: Transmit GS1 DataBar Omnidirectional Check Digit

0: DO NOT transmit GS1 DataBar Omnidirectional Check
Digit

1 CCD, Laser,
8700-Long
Range

 2 1: Transmit GS1 DataBar Limited Code ID

0: DO NOT transmit GS1 DataBar Limited Code ID

1 CCD, Laser,
8700-Long
Range

 1 1: Transmit GS1 DataBar Limited Application ID

0: DO NOT transmit GS1 DataBar Limited Application ID

1 CCD, Laser,
8700-Long
Range

 0 1: Transmit GS1 DataBar Limited Check Digit

0: DO NOT transmit GS1 DataBar Limited Check Digit

1 CCD, Laser,
8700-Long
Range

4 7 1: Transmit GS1 DataBar Expanded Code ID

0: DO NOT transmit GS1 DataBar Expanded Code ID

1 CCD, Laser,
8700-Long
Range

 6 1: Enable UPC-E1 & UPC-E0

0: Enable UPC-E0 only

0 CCD, Laser,
8700-Long
Range

 5 - 3 Reserved --- ---

 2 1: Code39 security normal

0: Code39 security high

0 CCD, Laser,
8700-Long
Range

 1 1: Verify Coop 25 Check Digit

0: DO NOT verify Coop 25 Check Digit

0 CCD, Laser,
8700-Long
Range

 0 1: Transmit Coop 25 Check Digit

0: DO NOT transmit Coop 25 Check Digit

1 CCD, Laser,
8700-Long
Range

Note: Coop 25 is not supported on 8500.

284

CipherLab C Programming Part I

5 7 1: Transmit Code 39 Start/Stop Character

0: DO NOT transmit Code 39 Start/Stop Character

0 CCD, Laser,
8700-Long
Range

 6 1: Verify Code 39 Check Digit

0: DO NOT verify Code 39 Check Digit

0 CCD, Laser,
8700-Long
Range

 5 1: Transmit Code 39 Check Digit

0: DO NOT transmit Code 39 Check Digit

1 CCD, Laser,
8700-Long
Range

 4 1: Full ASCII Code 39

0: Standard Code 39

0 CCD, Laser,
8700-Long
Range

 3 1: Transmit Italian Pharmacode Check Digit

0: DO NOT transmit Italian Pharmacode Check Digit

0 CCD, Laser,
8700-Long
Range

 2 1: Transmit CIP 39 Check Digit

0: DO NOT transmit CIP 39 Check Digit

0 CCD, Laser,
8700-Long
Range

 1 1: Verify Interleaved 25 Check Digit

0: DO NOT verify Interleaved 25 Check Digit

0 CCD, Laser,
8700-Long
Range

 0 1: Transmit Interleaved 25 Check Digit

0: DO NOT transmit Interleaved 25 Check Digit

1 CCD, Laser,
8700-Long
Range

6 7 1: Verify Industrial 25 Check Digit

0: DO NOT verify Industrial 25 Check Digit

0 CCD, Laser,
8700-Long
Range

 6 1: Transmit Industrial 25 Check Digit

0: DO NOT transmit Industrial 25 Check Digit

1 CCD, Laser,
8700-Long
Range

 5 1: Verify Matrix 25 Check Digit

0: DO NOT verify Matrix 25 Check Digit

0 CCD, Laser,
8700-Long
Range

 4 1: Transmit Matrix 25 Check Digit

0: DO NOT transmit Matrix 25 Check Digit

1 CCD, Laser,
8700-Long
Range

 3 - 2 Select Interleaved 25 Start/Stop Pattern

00: Use Industrial 25 Start/Stop Pattern

01: Use Interleaved 25 Start/Stop Pattern

10: Use Matrix 25 Start/Stop Pattern

11: Undefined

01 CCD, Laser,
8700-Long
Range

 285

 Appendix I ScannerDesTbl Array

 1 - 0 Select Industrial 25 Start/Stop Pattern

00: Use Industrial 25 Start/Stop Pattern

01: Use Interleaved 25 Start/Stop Pattern

10: Use Matrix 25 Start/Stop Pattern

11: Undefined

00 CCD, Laser,
8700-Long
Range

7 7 - 6 Select Matrix 25 Start/Stop Pattern

00: Use Industrial 25 Start/Stop Pattern

01: Use Interleaved 25 Start/Stop Pattern

10: Use Matrix 25 Start/Stop Pattern

11: Undefined

10 CCD, Laser,
8700-Long
Range

 5 - 4 Select Codabar Start/Stop Character

00: abcd/abcd

01: abcd/tn*e

10: ABCD/ABCD

11: ABCD/TN*E

00 CCD, Laser,
8700-Long
Range

 3 1: Transmit Codabar Start/Stop Character

0: DO NOT transmit Codabar Start/Stop Character

0 CCD, Laser,
8700-Long
Range

 2 Enable GS1 formatting for EAN-128

1: Enable

0: Disable

0 CCD, Laser,
8700-Long
Range

 1 Enable GS1 formatting for GS1 DataBar Family

1: Enable

0: Disable

0 CCD, Laser,
8700-Long
Range

 0 Reserved --- ---

8 7 - 0 Reserved --- ---

286

CipherLab C Programming Part I

9 7 - 6 MSI Check Digit Verification

00: Single Modulo 10

01: Double Modulo 10

10: Modulo 11 and Modulo 10

11: Undefined

10 CCD, Laser,
8700-Long
Range

 5 - 4 MSI Check Digit Transmission

00: Last Check Digit is NOT transmitted

01: Both Check Digits are transmitted

10: Both Check Digits are NOT transmitted

11: Undefined

01 CCD, Laser,
8700-Long
Range

 3 1: Transmit Plessey Check Digits

0: DO NOT transmit Plessey Check Digits

1 CCD, Laser,
8700-Long
Range

 2 1: Convert Standard Plessey to UK Plessey

0: No conversion

1 CCD, Laser,
8700-Long
Range

 1 1: Convert UPC-E to UPC-A

0: No conversion

0 CCD, Laser,
8700-Long
Range

 0 1: Convert UPC-A to EAN-13

0: No conversion

1 CCD, Laser,
8700-Long
Range

10 7 1: Enable ISBN Conversion

0: No conversion

0 CCD, Laser,
8700-Long
Range

 6 1: Enable ISSN Conversion

0: No conversion

0 CCD, Laser,
8700-Long
Range

 5 1: Transmit UPC-E Check Digit

0: DO NOT transmit UPC-E Check Digit

1 CCD, Laser,
8700-Long
Range

 4 1: Transmit UPC-A Check Digit

0: DO NOT transmit UPC-A Check Digit

1 CCD, Laser,
8700-Long
Range

 3 1: Transmit EAN-8 Check Digit

0: DO NOT transmit EAN8 Check Digit

1 CCD, Laser,
8700-Long
Range

 2 1: Transmit EAN-13 Check Digit

0: DO NOT transmit EAN13 Check Digit

1 CCD, Laser,
8700-Long
Range

 1 1: Transmit UPC-E System Number

0: DO NOT transmit UPC-E System Number

0 CCD, Laser,
8700-Long
Range

 0 1: Transmit UPC-A System Number

0: DO NOT transmit UPC-A System Number

1 CCD, Laser,
8700-Long
Range

 287

 Appendix I ScannerDesTbl Array

11 7 1: Convert EAN-8 to EAN-13

0: No conversion

0 CCD, Laser,
8700-Long
Range

 6 Convert EAN8 to EAN13 Format

1: GTIN-13

0: Default

0 CCD, Laser,
8700-Long
Range

 5 1: Enable GTIN-14

0: Disable GTIN-14

0 CCD, Laser,
8700-Long
Range

 4 1: Enable Negative Barcode

0: Disable Negative Barcode

1 CCD, Laser,
8700-Long
Range

 3 - 2 00: No Read Redundancy for Scanner Port 1

01: One Time Read Redundancy for Scanner Port 1

10: Two Times Read Redundancy for Scanner Port 1

11: Three Times Read Redundancy for Scanner Port 1

00 CCD, Laser,
8700-Long
Range

 1 1: Enable UPC-E Triple Check

0: Disable UPC-E Triple Check

0 CCD, Laser,
8700-Long
Range

 0 Reserved --- ---

12 7 1: Industrial 25 Code Length Limitation in Max/Min Length
Format

0: Industrial 25 Code Length Limitation in Fixed Length
Format

1 CCD, Laser,
8700-Long
Range

 6 - 0 Industrial 25 Max Code Length / Fixed Length 1 Max. 64 CCD, Laser,
8700-Long
Range

13 7 - 0 Industrial 25 Min Code Length / Fixed Length 2 Min. 1 CCD, Laser,
8700-Long
Range

14 7 1: Interleaved 25 Code Length Limitation in Max/Min
Length Format

0: Interleaved 25 Code Length Limitation in Fixed Length
Format

1 CCD, Laser,
8700-Long
Range

 6 - 0 Interleaved 25 Max Code Length / Fixed Length 1 Max. 64 CCD, Laser,
8700-Long
Range

15 7 - 0 Interleaved 25 Min Code Length / Fixed Length 2 Min. 1 CCD, Laser,
8700-Long
Range

288

CipherLab C Programming Part I

16 7 1: Matrix 25 Code Length Limitation in Max/Min Length
Format

0: Matrix 25 Code Length Limitation in Fixed Length
Format

1 CCD, Laser,
8700-Long
Range

 6 - 0 Matrix 25 Max Code Length / Fixed Length 1 Max. 64 CCD, Laser,
8700-Long
Range

17 7 - 0 Matrix 25 Min Code Length / Fixed Length 2 Min. 1 CCD, Laser,
8700-Long
Range

18 7 1: MSI 25 Code Length Limitation in Max/Min Length
Format

0: MSI 25 Code Length Limitation in Fixed Length Format

1 CCD, Laser,
8700-Long
Range

 6 - 0 MSI Max Code Length / Fixed Length 1 Max. 64 CCD, Laser,
8700-Long
Range

19 7 - 0 MSI Min Code Length / Fixed Length 2 Min. 1 CCD, Laser,
8700-Long
Range

20 7 - 4 Scan Mode for Scanner Port 1

0000: Auto Off Mode

0001: Continuous Mode

0010: Auto Power Off Mode

0011: Alternate Mode

0100: Momentary Mode

0101: Repeat Mode

0110: Laser Mode

0111: Test Mode

1000: Aiming Mode

0110 CCD, Laser,
8700-Long
Range

3 - 0 Reserved --- ---

21 7 - 0 Scanner time-out duration in seconds for Aiming mode,
Laser mode, Auto Off mode, and Auto Power Off mode

1 ~ 255 (sec): Decode time-out

0: No time-out

3 sec. CCD, Laser,
8700-Long
Range

 289

 Appendix I ScannerDesTbl Array

22 7 – 6 Byte 1 – bit 7 is required to be 1.

00: Decode Code 128 & EAN-128

 (for compatibility with old firmware version)

01: Decode EAN-128 only

10: Decode Code 128 only

11: Decode Code 128 & EAN-128

00 CCD, Laser,
8700-Long
Range

5 Byte 1 – bit 7 is required to be 1.

1: Strip EAN-128 Code ID

0: DO NOT strip EAN-128 Code ID

 (for compatibility with old firmware version)

0 CCD, Laser,
8700-Long
Range

4 1: Enable ISBT 128

0: Disable ISBT 128

1 CCD, Laser,
8700-Long
Range

3 - 0 Reserved --- ---

SCANNERDESTBL2[]

Byte Bit Description Default Scan Engine

0 7 N/A --- ---

 6 1: Enable EAN-13 Addon Mode 529

0: Disable EAN-13 Addon Mode 529

0 8200/8400
CCD, Laser

 5 1: Enable EAN-13 Addon Mode 491

0: Disable EAN-13 Addon Mode 491

0 8200/8400
CCD, Laser

 4 1: Enable EAN-13 Addon Mode 979

0: Disable EAN-13 Addon Mode 979

0 8200/8400
CCD, Laser

 3 1: Enable EAN-13 Addon Mode 978

0: Disable EAN-13 Addon Mode 978

0 8200/8400
CCD, Laser

 2 1: Enable EAN-13 Addon Mode 977

0: Disable EAN-13 Addon Mode 977

0 8200/8400
CCD, Laser

 1 1: Enable EAN-13 Addon Mode 378/379

0: Disable EAN-13 Addon Mode 378/379

0 8200/8400
CCD, Laser

 0 1: Enable EAN-13 Addon Mode 414/419/434/439

0: Disable EAN-13 Addon Mode 414/419/434/439

0 8200/8400
CCD, Laser

1 7 - 5 N/A --- ---

4 - 0 Addon security for UPC/EAN barcodes

Level: 0~30

0 8200/8400
CCD, Laser

290

CipherLab C Programming Part I

2 7 - 6 N/A --- ---

5 1: Skip checking Code 93 quiet zone

0: check Code 93 quiet zone

0 8200/8400
CCD, Laser

4 1: Skip checking Plessey quiet zone

0: check Plessey quiet zone

0 8200/8400
CCD, Laser

3 1: Skip checking Codabar quiet zone

0: check Codabar quiet zone

0 8200/8400
CCD, Laser

2 1: Skip checking UPC/EAN quiet zone

0: check Code UPC/EAN quiet zone

0 8200/8400
CCD, Laser

1 1: Skip checking Code 39 quiet zone

0: check Code 39 quiet zone

0 8200/8400
CCD, Laser

0 1: Skip checking Code 128 quiet zone

0: check Code 128 quiet zone

0 8200/8400
CCD, Laser

3 ~
15

--- Bytes 3 ~ 15 are reserved for 8200 --- ---

SYMBOLOGY PARAMETER TABLE FOR 2D/EXTRA LONG RANGE READER

SCANNERDESTBL[]

Byte Bit Description Default Scan Engine

0 7 1: Enable Code 39

0: Disable Code 39

1 2D, (Extra)
Long Range

6 1: Enable Code 32 (Italian Pharmacode)

0: Disable Code 32

0 2D, (Extra)
Long Range

5 N/A --- ---

4 N/A --- ---

3 1: Enable Interleaved 25

0: Disable Interleaved 25

1 2D, (Extra)
Long Range

2 1: Enable Matrix 25

0: Disable Matrix 25

0 8200, 8400,
8700 -2D

1 1: Enable Codabar (NW7)

0: Disable Codabar (NW7)

1 2D, (Extra)
Long Range

0 1: Enable Code 93

0: Disable Code 93

1 2D, (Extra)
Long Range

 291

 Appendix I ScannerDesTbl Array

1 7 1: Enable Code 128

0: Disable Code 128

1 2D, (Extra)
Long Range

 6 1: Enable UPC-E0

0: Disable UPC-E0 (depends)

1 2D, (Extra)
Long Range

 3 1: Enable EAN-8

0: Disable EAN-8 (depends)

1 2D, (Extra)
Long Range

 0 1: Enable EAN-13

0: Disable EAN-13 (depends)

1 2D, (Extra)
Long Range

 5 or 4
or 2
or 1

1: Enable Only Addon 2 & 5 of UPC & EAN Families

 (It requires “ANY” of the bits to be set 1.)

0: Disable Only Addon 2 & 5 of UPC & EAN Families

 (It requires “ALL” of the bits to be set 0.)

 Refer to Byte 2 - bit 7 or 6; Byte 27 - bit 6 or 4.

0 2D, (Extra)
Long Range

2 7 or 6 See above. 0 2D, (Extra)
Long Range

 5 1: Enable MSI

0: Disable MSI

1 2D, (Extra)
Long Range

Note: By default, MSI is disabled on 8200/8400/8700.

 4 N/A --- ---

 3 Reserved --- ---

 2 N/A --- ---

 1 N/A --- ---

 0 N/A --- ---

3 7 - 0 N/A --- ---

4 7 - 6 N/A --- ---

 5 - 0 Reserved --- ---

5 7 N/A --- ---

 6 1: Verify Code 39 Check Digit

0: DO NOT verify Code 39 Check Digit

0 2D, (Extra)
Long Range

 5 1: Transmit Code 39 Check Digit

0: DO NOT transmit Code 39 Check Digit

0 2D, (Extra)
Long Range

 4 1: Full ASCII Code 39

0: Standard Code 39

0 2D, (Extra)
Long Range

 3 - 1 N/A --- ---

 0 1: Transmit Interleaved 25 Check Digit

0: DO NOT transmit Interleaved 25 Check Digit

0 2D, (Extra)
Long Range

292

CipherLab C Programming Part I

6 7 - 6 Reserved --- ---

 5 1: Verify Matrix 25 Check Digit

0: DO NOT verify Matrix 25 Check Digit

0 8200, 8400,
8700 -2D

 4 1: Transmit Matrix 25 Check Digit

0: DO NOT transmit Matrix 25 Check Digit

0 8200, 8400,
8700 -2D

 3 - 0 Reserved --- ---

7 7 - 4 N/A --- ---

 3 1: Transmit Codabar Start/Stop Character

0: DO NOT transmit Codabar Start/Stop Character

0 2D, (Extra)
Long Range

 2 Enable GS1 formatting for EAN-128

1: Enable

0: Disable

0 2D

 1 - 0 Reserved --- ---

8 7 - 0 Reserved --- ---

9 7 - 6 MSI Check Digit Verification

00: Single Modulo 10

01: Double Modulo 10

10: Modulo 11 and Modulo 10

11: Undefined

01 2D, (Extra)
Long Range

 5 – 4 MSI Check Digit Transmission

00: Last check digit is NOT transmitted

01: Both check digits are transmitted

10: Both check digits are NOT transmitted

11: Undefined

00 2D, (Extra)
Long Range

 3 – 2 N/A --- ---

 1 1: Convert UPC-E0 to UPC-A

0: No conversion

0 2D, (Extra)
Long Range

 0 1: Convert UPC-A to EAN-13

0: No conversion

0 8200, 8400,
8700 2D

 293

 Appendix I ScannerDesTbl Array

10 7 – 6 N/A --- ---

 5 1: Transmit UPC-E0 Check Digit

0: DO NOT transmit UPC-E0 Check Digit

1 2D, (Extra)
Long Range

 4 1: Transmit UPC-A Check Digit

0: DO NOT transmit UPC-A Check Digit

1 2D, (Extra)
Long Range

 3 – 2 N/A --- ---

 1 1: Transmit UPC-E0 System Number

0: DO NOT transmit UPC-E0 System Number

1 2D, (Extra)
Long Range

 0 1: Transmit UPC-A System Number

0: DO NOT transmit UPC-A System Number

1 2D, (Extra)
Long Range

11 7 1: Convert EAN-8 to EAN-13

0: No conversion

1 2D, (Extra)
Long Range

 6 Reserved --- ---

 5 – 1 N/A --- ---

 0 Reserved --- ---

12 7 – 0 N/A --- ---

13 7 – 0 N/A --- ---

14 7 1: Interleaved 25 Code Length Limitation in Max/Min
Length Format

0: Interleaved 25 Code Length Limitation in Fixed Length
Format

0 2D, (Extra)
Long Range

 6 – 0 Interleaved 25 Max Code Length / Fixed Length 1 0 2D, (Extra)
Long Range

15 7 – 0 Interleaved 25 Min Code Length / Fixed Length 2
Note Length1 must be greater than Length2.

0 2D, (Extra)
Long Range

16 7 1: Matrix 25 Code Length Limitation in Max/Min Length
Format

0: Matrix 25 Code Length Limitation in Fixed Length
Format

1 8200, 8400,
8700 -2D

 6 – 0 Matrix 25 Max Code Length / Fixed Length 1 0 8200, 8400,
8700 -2D

17 7 – 0 Matrix 25 Min Code Length / Fixed Length 2
Note Length1 must be greater than Length2.

0 8200, 8400,
8700 -2D

18 7 1: MSI 25 Code Length Limitation in Max/Min Length
Format

0: MSI 25 Code Length Limitation in Fixed Length Format

1 2D, (Extra)
Long Range

 6 – 0 MSI Max Code Length / Fixed Length 1 Max. 31 2D, (Extra)
Long Range

294

CipherLab C Programming Part I

19 7 – 0 MSI Min Code Length / Fixed Length 2
Note Length1 must be greater than Length2.

Min. 3 2D, (Extra)
Long Range

20 7 – 4 Scan Mode for Scanner Port 1

1000: Aiming Mode

0111: Test Mode

0110: Laser Mode

0011: Alternate Mode

0001: Continuous Mode

0000: Auto-off Mode

Any value other than the above: Laser Mode

Laser
Mode

2D, (Extra)
Long Range

3 – 0 Reserved --- ---

21 7 – 0 N/A --- ---

22 7 – 0 Reserved --- ---

23 7 1: Code 39 Length Limitation in Max/Min Length Format

0: Code 39 Length Limitation in Fixed Length Format

0 2D, (Extra)
Long Range

6 – 0 Code 39 Max Code Length / Fixed Length1 0 2D, (Extra)
Long Range

24 7 – 0 Code 39 Min Code Length / Fixed Length2
Note Length1 must be greater than Length2.

0 2D, (Extra)
Long Range

 295

 Appendix I ScannerDesTbl Array

25 7 1: Transmit UPC-E1 System Number

0: DO NOT transmit UPC-E1 System Number

0 2D, (Extra)
Long Range

6 1: Transmit UPC-E1 Check Digit

0: DO NOT transmit UPC-E1 Check Digit

0 2D, (Extra)
Long Range

 5 1 : Enable GS1-128 Emulation Mode for UCC/EAN
Composite Codes

0 : Disable GS1-128 Emulation Mode for UCC/EAN
Composite Codes

0 2D

 4 1: Enable TCIF Linked Code 39

0: Disable TCIF Linked Code 39

0 2D

 3 1: Convert UPC-E1 to UPC-A

0: No conversion

0 2D, (Extra)
Long Range

 2 1: Enable Code 11

0: Disable Code 11

1 2D,

8300–LR
only

Note: By default, Code 11 is disabled on 8200/8400/8700.

 1 1: Enable Bookland EAN

 (Byte 1 - bit 0 for EAN-13 is required to be 1.)

0: Disable Bookland EAN

0 2D, (Extra)
Long Range

 0 1: Enable Joint Configuration of No Addon, Addon 2 & 5
for Any Member of UPC/EAN Families

0: Disable Joint Configuration

0 2D, (Extra)
Long Range

296

CipherLab C Programming Part I

26 7 1: Enable Industrial 25 (Discrete 25)

0: Disable Industrial 25 (Discrete 25)

1 2D, (Extra)
Long Range

 6 1: Enable ISBT 128

0: Disable ISBT 128

1 2D, (Extra)
Long Range

 5 1: Enable Trioptic Code 39

0: Disable Trioptic Code 39

0 2D, (Extra)
Long Range

 4 1: Enable UCC/EAN-128

0: Disable UCC/EAN-128

1 2D, (Extra)
Long Range

 3 1: Convert GS1 DataBar to UPC/EAN

0: No conversion

0 2D, (Extra)
Long Range

 2 1: Enable GS1 DataBar Expanded

0: Disable GS1 DataBar Expanded

1 2D, (Extra)
Long Range

 1 1: Enable GS1 DataBar Limited

0: Disable GS1 DataBar Limited

1 2D, (Extra)
Long Range

 0 1: Enable GS1 DataBar Omnidirectional

0: Disable GS1 DataBar Omnidirectional

1 2D, (Extra)
Long Range

27 7 1: Enable UPC-A

0: Disable UPC-A (depends)

1 2D, (Extra)
Long Range

 5 1: Enable UPC-E1

0: Disable UPC-E1 (depends)

0 2D, (Extra)
Long Range

 6 or 4 1: Enable Only Addon 2 & 5 of UPC & EAN Families

 (It requires “ANY” of the bits to be set 1.)

0: Disable Only Addon 2 & 5 of UPC & EAN Families

 (It requires “ALL” of the bits to be set 0.)

 Refer to Byte 1 - bit 5, 4, 2 or 1; Byte 2 - bit 7 or 6.

0 2D, (Extra)
Long Range

 3 - 2 00: UPC Never Linked

01: UPC Always Linked

10: Autodiscriminate UPC Composite

11: Undefined

01 2D

 1 1: Enable Composite CC-A/B

0: Disable Composite CC-A/B

0 2D

 0 1: Enable Composite CC-C

0: Disable Composite CC-C

0 2D

28 7 1: Code 93 Length Limitation in Max/Min Length Format

0: Code 93 Length Limitation in Fixed Length Format

0 2D, (Extra)
Long Range

 6 - 0 Code 93 Max Code Length / Fixed Length1 0 2D, (Extra)
Long Range

 297

 Appendix I ScannerDesTbl Array

29 7 - 0 Code 93 Min Code Length / Fixed Length2
Note Length1 must be greater than Length2.

0 2D, (Extra)
Long Range

30 7 1: Code 11 Length Limitation in Max/Min Length Format

0: Code 11 Length Limitation in Fixed Length Format

0 2D, 8300-LR
only

 6 - 0 Code 11 Max Code Length / Fixed Length1 0 2D, 8300-LR
only

31 7 - 0 Code 11 Min Code Length / Fixed Length2
Note Length1 must be greater than Length2.

0 2D, 8300-LR
only

32 7 1: Industrial 25 (Discrete 25) Length Limitation in Max/Min
Length Format

0: Industrial 25 (Discrete 25) Length Limitation in Fixed
Length Format

0 2D, (Extra)
Long Range

 6 - 0 Industrial 25 (Discrete 25) Max Code Length / Fixed
Length1

0 2D, (Extra)
Long Range

33 7 - 0 Industrial 25 (Discrete 25) Min Code Length / Fixed
Length2
Note Length1 must be greater than Length2.

0 2D, (Extra)
Long Range

34 7 1: Codabar Length Limitation in Max/Min Length Format

0: Codabar Length Limitation in Fixed Length Format

0 2D, (Extra)
Long Range

 6 - 0 Codabar Max Code Length / Fixed Length1 0 2D, (Extra)
Long Range

35 7 - 0 Codabar Min Code Length / Fixed Length2
Note Length1 must be greater than Length2.

0 2D, (Extra)
Long Range

298

CipherLab C Programming Part I

36 7 1: Transmit US Postal Check Digit

0: DO NOT transmit US Postal Check Digit

1 2D

 6 1: Enable Maxicode

0: Disable Maxicode

1 2D

 5 1: Enable Data Matrix

0: Disable Data Matrix

1 2D

 4 1: Enable QR Code

0: Disable QR Code

1 2D

 3 1: Enable US Planet

0: Disable US Planet

1 2D

 2 1: Enable US Postnet

0: Disable US Postnet

1 2D

 1 1: Enable MicroPDF417

0: Disable MicroPDF417

1 2D

 0 1: Enable PDF417

0: Disable PDF417

1 2D

37 7 - 6 00: DO NOT verify Interleaved 25 Check Digit

01: Verify Interleaved 25 USS Check Digit

10: Verify Interleaved 25 OPCC Check Digit

11: Undefined

00 2D, (Extra)
Long Range

 5 Reserved --- ---

 4 1: Enable Japan Postal

0: Disable Japan Postal

1 2D

 3 1: Enable Australian Postal

0: Disable Australian Postal

1 2D

 2 1: Enable Dutch Postal

0: Disable Dutch Postal

1 2D

 1 1: Enable UK Postal Check Digit

0: Disable UK Postal Check Digit

1 2D

 0 1: Enable UK Postal

0: Disable UK Postal

1 2D

38 7 - 0 Scanner time-out duration in seconds for Aiming mode,
Laser mode and Auto-off mode

1 ~ 255 (sec): Decode time-out

0: No time-out (= always scanning)

3 sec. 2D, (Extra)
Long Range

 299

 Appendix I ScannerDesTbl Array

39 7 1: Enable UPC-A System Number & Country Code

0: Disable UPC-A System Number & Country Code

1 2D, (Extra)
Long Range

 6 1: Enable UPC-E System Number & Country Code

0: Disable UPC-E System Number & Country Code

1 2D, (Extra)
Long Range

 5 1: Enable UPC-E1 System Number & Country Code

0: Disable UPC-E1 System Number & Country Code

1 2D, (Extra)
Long Range

 4 1: Convert Interleaved 25 to EAN-13

0: No conversion

0 2D, (Extra)
Long Range

 3 - 2 Macro PDF Transmit / Decode Mode

00: Passthrough all symbols

01: Buffer all symbols / Transmit Macro PDF when
complete

10: Transmit any symbol in set / No particular order

00 2D

 1 1: Enable Macro PDF Escape Characters

0: Disable Macro PDF Escape Characters

0 2D

 0 1: Enable USPS 4CB / One Code / Intelligent Mail

0: Disable USPS 4CB / One Code / Intelligent Mail

0 8200, 8400,
8700 -2D

40 7 - 6 00: Far Focus

01: Near Focus

10: Smart Focus

00 8500-2D

 5 1: Enable Decode Aiming Pattern

0: Disable Decode Aiming Pattern

1 2D

 4 1: Enable Decode Illumination

0: Disable Decode Illumination

1 2D

 3 1: Enable Picklist Mode

0: Disable Picklist Mode

0 8200, 8400,
8700 -2D

 2 - 1 1D Inverse Decoder

00: Decode regular 1D barcode only

01: Decode inverse 1D barcode only

10: Decode both regular and inverse

00 8200, 8400,
8700 -2D

 0 1: Reader sleeps during system suspend

0: Reader is powered off during system suspend

0 8200, 8400,
8700 -2D

41 7 1: Enable UPU FICS Postal

0: Disable UPU FICS Postal

0 8200, 8400,
8700 -2D

 6 UPC/EAN – Bookland ISBN Format

1: UPC/EAN – Bookland ISBN 13

0: UPC/EAN – Bookland ISBN 10

0 8200, 8400,
8700 -2D

300

CipherLab C Programming Part I

 5 - 4 Data Matrix Inverse

00: Decode regular Data Matrix only

01: Decode inverse Data Matrix only

10: Decode both regular and inverse

00 8200, 8400,
8700 -2D

 3 - 2 Data Matrix Mirror

00: Decode unmirrored Data Matrix only

01: Decode mirrored Data Matrix only

10: Decode both mirrored and unmirrored

00 8200, 8400,
8700 -2D

 1 - 0 QR Code Inverse

00: Decode regular QR Code only

01: Decode inverse QR Code only

10: Decode both regular and inverse

00 8200, 8400,
8700 -2D

42 7 1: Enable MicroQR

0: Disable MicroQR

1 8200, 8400,
8700 -2D

6 1: Enable Aztec

0: Disable Aztec

1 8200, 8400,
8700 -2D

5 - 4 Aztec Inverse

00: Decode regular Aztec only

01: Decode inverse Aztec only

10: Decode both regular and inverse

00 8200, 8400,
8700 -2D

3 1: Enable UCC Coupon Code

0: Disable UCC Coupon Code

0 2D, (Extra)
Long Range

2 1: Enable Chinese 25

0: Disable Chinese 25

0 8200, 8400,
8700 -2D

1 - 0 Code 11 Check Digit Verification

00: Disable

01: One check digit

10: Two check digits

00 2D,
8300 –LR
only

43 7 1: Enable Mobile Display

0: Disable

0 2D

6-5 00: No Read Redundancy

01: One Time Read Redundancy

10: Two Times Read Redundancy

00 2D

4-0 Reserved --- ---

44 7 Enable GS1 formatting for GS1 DataBar Omnidirectional

1: Enable

0: Disable

0 2D

 301

 Appendix I ScannerDesTbl Array

6 Enable GS1 formatting for GS1-DataBar Limited

1: Enable

0: Disable

0 2D

5 Enable GS1 formatting for GS1-DataBar Expanded

1: Enable

0: Disable

0 2D

4 Enable GS1 formatting for Composite CC-A/B

1: Enable

0: Disable

0 2D

3 Enable GS1 formatting for Composite CC-C

1: Enable

0: Disable

0 2D

45
~
82

--- Bytes 45 ~ 47 are reserved for 8200, 8300, 8400, 8700

Bytes 45 ~ 82 are reserved for 8500

--- 2D

 303

Each of the scan engines can decode a number of barcode symbologies. This appendix
describes the associated symbology parameters accordingly.

IN THIS CHAPTER

Scan Engine, CCD or Laser .. 303
Scan Engine, 2D or (Extra) Long Range Laser 319
2D Scan Engine Only .. 331

SCAN ENGINE, CCD OR LASER

CODABAR

ScannerDesTbl[]

Byte Bit Description Default Scan Engine

0 1 1: Enable Codabar (NW7)

0: Disable Codabar (NW7)

1 CCD, Laser,
8700-Long
Range

7 5 - 4 Select Codabar Start/Stop Character

00: abcd/abcd

01: abcd/tn*e

10: ABCD/ABCD

11: ABCD/TN*E

00 CCD, Laser,
8700-Long
Range

7 3 1: Transmit Codabar Start/Stop Character

0: DO NOT transmit Codabar Start/Stop Character

0 CCD, Laser,
8700-Long
Range

Select Start/Stop Character

Select no start/stop characters, or one of the four different start/stop character pairs to be
included in the data being transmitted.

 abcd/abcd

 abcd/tn*e

 ABCD/ABCD

 ABCD/TN*E

Transmit Start/Stop Character

Decide whether or not to include the start/stop characters in the data being transmitted.

Appendix II
SYMBOLOGY PARAMETERS

304

CipherLab C Programming Part I

CODE 2 OF 5 FAMILY

INDUSTRIAL 25

ScannerDesTbl[]

Byte Bit Description Default Scan Engine

0 4 1: Enable Industrial 25

0: Disable Industrial 25

1 CCD, Laser,
8700-Long
Range

6 7 1: Verify Industrial 25 Check Digit

0: DO NOT verify Industrial 25 Check Digit

0 CCD, Laser,
8700-Long
Range

6 6 1: Transmit Industrial 25 Check Digit

0: DO NOT transmit Industrial 25 Check Digit

1 CCD, Laser,
8700-Long
Range

6 1 - 0 Select Industrial 25 Start/Stop Pattern

00: Use Industrial 25 Start/Stop Pattern

01: Use Interleaved 25 Start/Stop Pattern

10: Use Matrix 25 Start/Stop Pattern

11: Undefined

00 CCD, Laser,
8700-Long
Range

12 7 1: Industrial 25 Code Length Limitation in Max/Min Length
Format

0: Industrial 25 Code Length Limitation in Fixed Length
Format

1 CCD, Laser,
8700-Long
Range

12 6 - 0 Industrial 25 Max Code Length / Fixed Length 1 Max. 64 CCD, Laser,
8700-Long
Range

13 7 - 0 Industrial 25 Min Code Length / Fixed Length 2 Min. 1 CCD, Laser,
8700-Long
Range

Verify Check Digit

Decide whether or not to perform check digit verification when decoding barcodes.

 If true and the check digit found incorrect, the barcode will not be accepted.

Transmit Check Digit

Decide whether or not to include the check digit in the data being transmitted.

Select Start/Stop Pattern

Select a suitable Start/Stop pattern for reading a specific variant of 2 of 5 symbology.

 For example, flight tickets actually use an Industrial 2 of 5 barcode but with Interleaved 2 of 5
start/stop pattern. In order to read this barcode, the start/stop pattern selection parameter of
Industrial 2 of 5 should set to “Interleaved 25”.

 305

 Appendix II Symbology Parameters

Length Qualification

Because of the weak structure of the 2 of 5 symbologies, it is possible to make a “short scan”
error. To prevent the “short scan” error, define the “Length Qualification” settings to ensure that
the correct barcode is read by qualifying the allowable code length.

 If “Fixed Length” is selected, up to 2 fixed lengths can be specified.

 If “Max/Min Length” is selected, the maximum length and the minimum length must be
specified. It only accepts those barcodes with lengths that fall between max/min lengths
specified.

INTERLEAVED 25

Refer to Industrial 25.

ScannerDesTbl[]

Byte Bit Description Default Scan Engine

0 3 1: Enable Interleaved 25

0: Disable Interleaved 25

1 CCD, Laser,
8700-Long
Range

5 1 1: Verify Interleaved 25 Check Digit

0: DO NOT verify Interleaved 25 Check Digit

0 CCD, Laser,
8700-Long
Range

5 0 1: Transmit Interleaved 25 Check Digit

0: DO NOT transmit Interleaved 25 Check Digit

1 CCD, Laser,
8700-Long
Range

6 3 - 2 Select Interleaved 25 Start/Stop Pattern

00: Use Industrial 25 Start/Stop Pattern

01: Use Interleaved 25 Start/Stop Pattern

10: Use Matrix 25 Start/Stop Pattern

11: Undefined

01 CCD, Laser,
8700-Long
Range

14 7 1: Interleaved 25 Code Length Limitation in Max/Min
Length Format

0: Interleaved 25 Code Length Limitation in Fixed Length
Format

1 CCD, Laser,
8700-Long
Range

14 6 - 0 Interleaved 25 Max Code Length / Fixed Length 1 Max. 64 CCD, Laser,
8700-Long
Range

15 7 - 0 Interleaved 25 Min Code Length / Fixed Length 2 Min. 1 CCD, Laser,
8700-Long
Range

306

CipherLab C Programming Part I

MATRIX 25

Refer to Industrial 25.

ScannerDesTbl[]

Byte Bit Description Default Scan Engine

0 2 1: Enable Matrix 25

0: Disable Matrix 25

0 CCD, Laser,
8700-Long
Range

6 5 1: Verify Matrix 25 Check Digit

0: DO NOT verify Matrix 25 Check Digit

0 CCD, Laser,
8700-Long
Range

6 4 1: Transmit Matrix 25 Check Digit

0: DO NOT transmit Matrix 25 Check Digit

1 CCD, Laser,
8700-Long
Range

7 7 - 6 Select Matrix 25 Start/Stop Pattern

00: Use Industrial 25 Start/Stop Pattern

01: Use Interleaved 25 Start/Stop Pattern

10: Use Matrix 25 Start/Stop Pattern

11: Undefined

10 CCD, Laser,
8700-Long
Range

16 7 1: Matrix 25 Code Length Limitation in Max/Min Length
Format

0: Matrix 25 Code Length Limitation in Fixed Length
Format

1 CCD, Laser,
8700-Long
Range

16 6 - 0 Matrix 25 Max Code Length / Fixed Length 1 Max. 64 CCD, Laser,
8700-Long
Range

17 7 - 0 Matrix 25 Min Code Length / Fixed Length 2 Min. 1 CCD, Laser,
8700-Long
Range

 307

 Appendix II Symbology Parameters

COOP 25

Currently, the support of Coop 25 is implemented on 8000, 8200, 8300, 8400 and 8700.

ScannerDesTbl[]

Byte Bit Description Default Scan Engine

2 3 1: Enable Coop 25

0: Disable Coop 25

0 CCD, Laser,
8700-Long
Range

4 1 1: Verify Coop 25 Check Digit

0: DO NOT verify Coop 25 Check Digit

0 CCD, Laser,
8700-Long
Range

4 0 1: Transmit Coop 25 Check Digit

0: DO NOT transmit Coop 25 Check Digit

1 CCD, Laser,
8700-Long
Range

Verify Check Digit

Decide whether or not to perform check digit verification when decoding barcodes.

 If true and the check digit found incorrect, the barcode will not be accepted.

Note: “Verify Check Digit” must be enabled so that the check digit can be left out when it
is preferred not to transmit the check digit.

Transmit Check Digit

Decide whether or not to include the check digit in the data being transmitted.

CODE 39

ScannerDesTbl[]

Byte Bit Description Default Scan Engine

0 7 1: Enable Code 39

0: Disable Code 39

1 CCD, Laser,
8700-Long
Range

4 2 1: Code 39 security normal

0: Code 39 security high

0 CCD, Laser,
8700-Long
Range

5 7 1: Transmit Code 39 Start/Stop Character

0: DO NOT transmit Code 39 Start/Stop Character

0 CCD, Laser,
8700-Long
Range

5 6 1: Verify Code 39 Check Digit

0: DO NOT verify Code 39 Check Digit

0 CCD, Laser,
8700-Long
Range

308

CipherLab C Programming Part I

5 5 1: Transmit Code 39 Check Digit

0: DO NOT transmit Code 39 Check Digit

1 CCD, Laser,
8700-Long
Range

5 4 1: Full ASCII Code 39

0: Standard Code 39

0 CCD, Laser,
8700-Long
Range

Transmit Start/Stop Character

Decide whether or not to include the start/stop characters in the data being transmitted.

Verify Check Digit

Decide whether or not to perform check digit verification when decoding barcodes.

 If true and the check digit found incorrect, the barcode will not be accepted.

Transmit Check Digit

Decide whether or not to include the check digit in the data being transmitted.

Code 39 Full ASCII

Decide whether or not to support Code 39 Full ASCII that includes all the alphanumeric and
special characters.

CODE 93

ScannerDesTbl[]

Byte Bit Description Default Scan Engine

0 0 1: Enable Code 93

0: Disable Code 93

1 CCD, Laser,
8700-Long
Range

 309

 Appendix II Symbology Parameters

CODE 128/EAN-128/ISBT 128

ScannerDesTbl[]

Byte Bit Description Default Scan Engine

1 7 1: Enable Code 128 & EAN-128

0: Disable Code 128 & EAN-128

1 CCD, Laser,
8700-Long
Range

7 2 1: Enable GS1 formatting for EAN-128

0: Disable GS1 formatting for EAN-128

0 CCD, Laser,
8700-Long
Range

22 7 - 6 Byte 1 – bit 7 is required to be 1.

00: Decode Code 128 & EAN-128

 (for compatibility with old firmware version)

01: Decode EAN-128 only

10: Decode Code 128 only

11: Decode Code 128 & EAN-128

00 CCD, Laser,
8700-Long
Range

22 5 Byte 1 – bit 7 is required to be 1.

1: Strip EAN-128 Code ID

0: DO NOT strip EAN-128 Code ID

 (for compatibility with old firmware version)

0 CCD, Laser,
8700-Long
Range

22 4 1: Enable ISBT 128

0: Disable ISBT 128

1 CCD, Laser,
8700-Long
Range

ITALIAN/FRENCH PHARMACODE

ScannerDesTbl[]

Byte Bit Description Default Scan Engine

0 6 1: Enable Italian Pharmacode

0: Disable Italian Pharmacode

0 CCD, Laser,
8700-Long
Range

0 5 1: Enable CIP 39 (French Pharmacode)

0: Disable CIP 39

0 CCD, Laser,
8700-Long
Range

5 3 1: Transmit Italian Pharmacode Check Digit

0: DO NOT transmit Italian Pharmacode Check Digit

0 CCD, Laser,
8700-Long
Range

5 2 1: Transmit CIP 39 Check Digit

0: DO NOT transmit CIP 39 Check Digit

0 CCD, Laser,
8700-Long
Range

Transmit Check Digit

310

CipherLab C Programming Part I

Decide whether or not to include the check digit in the data being transmitted.

Note: Share the Transmit Start/Stop Character setting with Code 39.

MSI

ScannerDesTbl[]

Byte Bit Description Default Scan Engine

2 5 1: Enable MSI

0: Disable MSI

0 CCD, Laser,
8700-Long
Range

9 7 - 6 MSI Check Digit Verification

00: Single Modulo 10

01: Double Modulo 10

10: Modulo 11 and Modulo 10

11: Undefined

10 CCD, Laser,
8700-Long
Range

9 5 - 4 MSI Check Digit Transmission

00: Last Check Digit is NOT transmitted

01: Both Check Digits are transmitted

10: Both Check Digits are NOT transmitted

11: Undefined

01 CCD, Laser,
8700-Long
Range

18 7 1: MSI 25 Code Length Limitation in Max/Min Length
Format

0: MSI 25 Code Length Limitation in Fixed Length Format

1 CCD, Laser,
8700-Long
Range

18 6 - 0 MSI Max Code Length / Fixed Length 1 Max. 64 CCD, Laser,
8700-Long
Range

19 7 - 0 MSI Min Code Length / Fixed Length 2 Min. 1 CCD, Laser,
8700-Long
Range

 311

 Appendix II Symbology Parameters

Verify Check Digit

Select one of the three calculations to perform check digit verification when decoding barcodes.

 If true and the check digit found incorrect, the barcode will not be accepted.

Transmit Check Digit

Decide whether or not to include the check digit in the data being transmitted.

Length Qualification

Because of the weak structure of the symbology, it is possible to make a “short scan” error. To
prevent the “short scan” error, define the “Length Qualification” settings to ensure that the correct
barcode is read by qualifying the allowable code length.

 If “Fixed Length” is selected, up to 2 fixed lengths can be specified.

 If “Max/Min Length” is selected, the maximum length and the minimum length must be
specified. It only accepts those barcodes with lengths that fall between max/min lengths
specified.

NEGATIVE BARCODE

ScannerDesTbl[]

Byte Bit Description Default Scan Engine

11 4 1: Enable Negative Barcode

0: Disable Negative Barcode

1 CCD, Laser,
8700-Long
Range

PLESSEY

ScannerDesTbl[]

Byte Bit Description Default Scan Engine

2 4 1: Enable Plessey

0: Disable Plessey

0 CCD, Laser,
8700-Long
Range

9 3 1: Transmit Plessey Check Digits

0: DO NOT transmit Plessey Check Digits

1 CCD, Laser,
8700-Long
Range

9 2 1: Convert Standard Plessey to UK Plessey

0: No conversion

1 CCD, Laser,
8700-Long
Range

Transmit Check Digits

Decide whether or not to include the two check digits in the data being transmitted.

Convert to UK Plessey

Decide whether or not to change each occurrence of the character 'A' to character 'X' in the
decoded data.

312

CipherLab C Programming Part I

GS1 DATABAR (RSS) FAMILY

ScannerDesTbl[]

Byte Bit Description Default Scan Engine

2 0 1: Enable GS1 DataBar Limited

0: Disable GS1 DataBar Limited

0 CCD, Laser,
8700-Long
Range

3 6 1: Enable GS1 DataBar Omnidirectional & GS1 DataBar
Expanded

0: Disable GS1 DataBar Omnidirectional & GS1 DataBar
Expanded

0 CCD, Laser,
8700-Long
Range

3 5 1: Transmit GS1 DataBar Omnidirectional Code ID

0: DO NOT transmit GS1 DataBar Omnidirectional Code ID

1 CCD, Laser,
8700-Long
Range

3 4 1: Transmit GS1 DataBar Omnidirectional Application ID

0: DO NOT transmit GS1 DataBar Omnidirectional
Application ID

1 CCD, Laser,
8700-Long
Range

3 3 1: Transmit GS1 DataBar Omnidirectional Check Digit

0: DO NOT transmit GS1 DataBar Omnidirectional Check
Digit

1 CCD, Laser,
8700-Long
Range

3 2 1: Transmit GS1 DataBar Limited Code ID

0: DO NOT transmit GS1 DataBar Limited Code ID

1 CCD, Laser,
8700-Long
Range

3 1 1: Transmit GS1 DataBar Limited Application ID

0: DO NOT transmit GS1 DataBar Limited Application ID

1 CCD, Laser,
8700-Long
Range

3 0 1: Transmit GS1 DataBar Limited Check Digit

0: DO NOT transmit GS1 DataBar Limited Check Digit

1 CCD, Laser,
8700-Long
Range

4 7 1: Transmit GS1 DataBar Expanded Code ID

0: DO NOT transmit GS1 DataBar Expanded Code ID

1 CCD, Laser,
8700-Long
Range

7 1 1: Enable GS1 formatting for GS1 DataBar Family

0: Disable GS1 formatting for GS1 DataBar Family

0 CCD, Laser,
8700-Long
Range

Transmit Code ID

Decide whether or not to include the Code ID (“]e0”) in the data being transmitted.

Transmit Application ID

Decide whether or not to include the Application ID (“01”) in the data being transmitted.

Transmit Check Digit

Decide whether or not to include the check digit in the data being transmitted.

 313

 Appendix II Symbology Parameters

TELEPEN

ScannerDesTbl[]

Byte Bit Description Default Scan Engine

2 2 1: Enable Telepen

0: Disable Telepen

0 CCD, Laser,
8700-Long
Range

2 1 1: Enable original Telepen (= Numeric mode)

0: Disable original Telepen (= ASCII mode)

0 CCD, Laser,
8700-Long
Range

Original Telepen (Numeric)

Decide whether or not to support Telepen in full ASCII code. By default, it supports ASCII mode.

 AIM Telepen (Full ASCII) includes all the alphanumeric and special characters.

UPC/EAN FAMILIES

EAN-8

ScannerDesTbl[]

Byte Bit Description Default Scan Engine

1 3 1: Enable EAN-8

0: Disable EAN-8

1 CCD, Laser,
8700-Long
Range

1 2 1: Enable EAN-8 Addon 2

0: Disable EAN-8 Addon 2

0 CCD, Laser,
8700-Long
Range

1 1 1: Enable EAN-8 Addon 5

0: Disable EAN-8 Addon 5

0 CCD, Laser,
8700-Long
Range

10 3 1: Transmit EAN-8 Check Digit

0: DO NOT transmit EAN8 Check Digit

1 CCD, Laser,
8700-Long
Range

11 7 1: Convert EAN-8 to EAN-13

0: No conversion

0 CCD, Laser,
8700-Long
Range

11 6 1: Convert EAN-8 to EAN-13 in GTIN-13 format

0: Convert EAN-8 to EAN-13 in default format

0 CCD, Laser,
8700-Long
Range

Transmit Check Digit

Decide whether or not to include the check digit in the data being transmitted.

Convert EAN-8 to EAN-13

314

CipherLab C Programming Part I

Decide whether or not to expand the read EAN-8 barcode into EAN-13. If true, the next
processing will follow the parameters configured for EAN-13.

EAN-13

ScannerDesTbl[]

Byte Bit Description Default Scan Engine

1 0 1: Enable EAN-13 & UPC-A

0: Disable EAN-13 & UPC-A

1 CCD, Laser,
8700-Long
Range

2 7 1: Enable EAN-13 & UPC-A Addon 2

0: Disable EAN-13 & UPC-A Addon 2

0 CCD, Laser,
8700-Long
Range

2 6 1: Enable EAN-13 & UPC-A Addon 5

0: Disable EAN-13 & UPC-A Addon 5

0 CCD, Laser,
8700-Long
Range

10 7 1: Enable ISBN Conversion

0: No conversion

0 CCD, Laser,
8700-Long
Range

10 6 1: Enable ISSN Conversion

0: No conversion

0 CCD, Laser,
8700-Long
Range

10 2 1: Transmit EAN-13 Check Digit

0: DO NOT transmit EAN13 Check Digit

1 CCD, Laser,
8700-Long
Range

Convert EAN-13 to ISBN

Decide whether or not to convert the EAN-13 barcode, starting with 978 and 979, to ISBN.

Convert EAN-13 to ISSN

Decide whether or not to convert the EAN-13 barcode, starting with 977 to ISSN.

Transmit Check Digit

Decide whether or not to include the check digit in the data being transmitted.

EAN-13 ADDON MODE

ScannerDesTbl2[]

Byte Bit Description Default Scan Engine

0 7 N/A --- ---

6 1: Enable EAN-13 Addon Mode 529

0: Disable EAN-13 Addon Mode 529

0 8200/8400
CCD, Laser

5 1: Enable EAN-13 Addon Mode 491

0: Disable EAN-13 Addon Mode 491

0 8200/8400
CCD, Laser

 315

 Appendix II Symbology Parameters

4 1: Enable EAN-13 Addon Mode 979

0: Disable EAN-13 Addon Mode 979

0 8200/8400
CCD, Laser

3 1: Enable EAN-13 Addon Mode 978

0: Disable EAN-13 Addon Mode 978

0 8200/8400
CCD, Laser

2 1: Enable EAN-13 Addon Mode 977

0: Disable EAN-13 Addon Mode 977

0 8200/8400
CCD, Laser

1 1: Enable EAN-13 Addon Mode 378/379

0: Disable EAN-13 Addon Mode 378/379

0 8200/8400
CCD, Laser

0 1: Enable EAN-13 Addon Mode 414/419/434/439

0: Disable EAN-13 Addon Mode 414/419/434/439

0 8200/8400
CCD, Laser

EAN-13 Addon Mode 529

When enabled, the EAN-13 barcode, starting with 529, is supposed to come with its addons.
Otherwise, the reading process fails.

EAN-13 Addon Mode 491

When enabled, the EAN-13 barcode, starting with 491, is supposed to come with its addons.
Otherwise, the reading process fails.

EAN-13 Addon Mode 979

When enabled, the EAN-13 barcode, starting with 979, is supposed to come with its addons.
Otherwise, the reading process fails.

EAN-13 Addon Mode 978

When enabled, the EAN-13 barcode, starting with 978, is supposed to come with its addons.
Otherwise, the reading process fails.

EAN-13 Addon Mode 977

When enabled, the EAN-13 barcode, starting with 977, is supposed to come with its addons.
Otherwise, the reading process fails.

EAN-13 Addon Mode 378/379

When enabled, the EAN-13 barcode, starting with 378/379, is supposed to come with its addons.
Otherwise, the reading process fails.

EAN-13 Addon Mode 414/419/434/439

When enabled, the EAN-13 barcode, starting with 414/419/434/439, is supposed to come with its
addons. Otherwise, the reading process fails.

316

CipherLab C Programming Part I

GTIN

ScannerDesTbl[]

Byte Bit Description Default Scan Engine

11 5 1: Enable GTIN-14

0: Disable GTIN-14

0 CCD, Laser,
8700-Long
Range

UPC-A

ScannerDesTbl[]

Byte Bit Description Default Scan Engine

9 0 1: Convert UPC-A to EAN-13

0: No conversion

1 CCD, Laser,
8700-Long
Range

10 4 1: Transmit UPC-A Check Digit

0: DO NOT transmit UPC-A Check Digit

1 CCD, Laser,
8700-Long
Range

10 0 1: Transmit UPC-A System Number

0: DO NOT transmit UPC-A System Number

1 CCD, Laser,
8700-Long
Range

Convert UPC-A to EAN-13

Decide whether or not to expand the read UPC-A barcode into EAN-13. If true, the next
processing will follow the parameters configured for EAN-13.

Transmit Check Digit

Decide whether or not to include the check digit in the data being transmitted.

Transmit System Number

Decide whether or not to include the system number in the data being transmitted.

Note: UPC-A is to be enabled together with EAN-13, therefore, check associated EAN-13
settings first.

 317

 Appendix II Symbology Parameters

UPC-E

ScannerDesTbl[]

Byte Bit Description Default Scan Engine

1 6 1: Enable UPC-E

0: Disable UPC-E

1 CCD, Laser,
8700-Long
Range

1 5 1: Enable UPC-E Addon 2

0: Disable UPC-E Addon 2

0 CCD, Laser,
8700-Long
Range

1 4 1: Enable UPC-E Addon 5

0: Disable UPC-E Addon 5

0 CCD, Laser,
8700-Long
Range

4 6 1: Enable UPC-E1 & UPC-E0

0: Enable UPC-E0 only

0 CCD, Laser,
8700-Long
Range

9 1 1: Convert UPC-E to UPC-A

0: No conversion

0 CCD, Laser,
8700-Long
Range

10 5 1: Transmit UPC-E Check Digit

0: DO NOT transmit UPC-E Check Digit

1 CCD, Laser,
8700-Long
Range

10 1 1: Transmit UPC-E System Number

0: DO NOT transmit UPC-E System Number

0 CCD, Laser,
8700-Long
Range

11 1 1: Enable UPC-E Triple Check

0: Disable UPC-E Triple Check

0 CCD, Laser,
8700-Long
Range

Convert UPC-E to UPC-A

Decide whether or not to expand the read UPC-E barcode into UPC-A. If true, the next processing
will follow the parameters configured for UPC-A.

Transmit Check Digit

Decide whether or not to include the check digit in the data being transmitted.

Transmit System Number

Decide whether or not to include the system number in the data being transmitted.

UPC-E Triple Check

Decide whether to apply a triple check to the UPC-E barcode. If enabled, the correct rate will be
improved; however, enabling it may cause difficulties in reading some non-standard barcodes.

 This is helpful when the barcode is defaced and requires more attempts to check it.

ADDON SECURITY FOR UPC/EAN

318

CipherLab C Programming Part I

ScannerDesTbl2[]

Byte Bit Description Default Scan Engine

1 7 - 5 N/A --- ---

4 - 0 Addon security for UPC/EAN barcodes

Level: 0~30

0 8200/8400
CCD, Laser

Addon Security for UPC/EAN

The scanner is capable of decoding a mix of UPC/EAN barcodes with and without addons. The read
redundancy (level) ranging from 0 to 30 allows changing the number of times to decode a
UPC/EAN barcode before transmission.

 319

 Appendix II Symbology Parameters

SCAN ENGINE, 2D OR (EXTRA) LONG RANGE LASER

CODABAR

ScannerDesTbl[]

Byte Bit Description Default Scan Engine

0 1 1: Enable Codabar (NW7)

0: Disable Codabar (NW7)

1 2D, (Extra)
Long Range

7 3 1: Transmit Codabar Start/Stop Character

0: DO NOT transmit Codabar Start/Stop Character

0 2D, (Extra)
Long Range

34 7 1: Codabar Length Limitation in Max/Min Length Format

0: Codabar Length Limitation in Fixed Length Format

0 2D, (Extra)
Long Range

34 6 - 0 Codabar Max Code Length / Fixed Length1 0 2D, (Extra)
Long Range

35 7 - 0 Codabar Min Code Length / Fixed Length2
Note Length1 must be greater than Length2.

0 2D, (Extra)
Long Range

Transmit Start/Stop Character

Decide whether or not to include the start/stop characters in the data being transmitted.

Length Qualification

The barcode can be qualified by “Fixed Length” or “Max/Min Length”. The length of a barcode
refers to the number of characters (= human readable characters), including check digit(s) it
contains.

 If “Fixed Length” is selected, up to 2 fixed lengths can be specified.

 If “Max/Min Length” is selected, the maximum length and the minimum length must be
specified. It only accepts those barcodes with lengths that fall between max/min lengths
specified.

Note: When it is configured to use Fixed Length format, Length1 must be greater than
Length2. Otherwise, the format will be converted to Max/Min Length Format, and
Length1 becomes Min. Length while Length2 becomes Max. Length. In either length
format, when both of the values are configured to 0, it means no limit in length.

320

CipherLab C Programming Part I

CODE 2 OF 5

INDUSTRIAL 25 (DISCRETE 25)

ScannerDesTbl[]

Byte Bit Description Default Scan Engine

26 7 1: Enable Industrial 25 (Discrete 25)

0: Disable Industrial 25 (Discrete 25)

1 2D, (Extra)
Long Range

32 7 1: Industrial 25 (Discrete 25) Length Limitation in Max/Min
Length Format

0: Industrial 25 (Discrete 25) Length Limitation in Fixed
Length Format

0 2D, (Extra)
Long Range

32 6 - 0 Industrial 25 (Discrete 25) Max Code Length / Fixed
Length1

0 2D, (Extra)
Long Range

33 7 - 0 Industrial 25 (Discrete 25) Min Code Length / Fixed
Length2
Note Length1 must be greater than Length2.

0 2D, (Extra)
Long Range

Length Qualification

Because of the weak structure of the 2 of 5 symbologies, it is possible to make a “short scan”
error. To prevent the “short scan” error, define the “Length Qualification” settings to ensure that
the correct barcode is read by qualifying the allowable code length. Refer to Codabar.

INTERLEAVED 25

ScannerDesTbl[]

Byte Bit Description Default Scan Engine

0 3 1: Enable Interleaved 25

0: Disable Interleaved 25

1 2D, (Extra)
Long Range

5 0 1: Transmit Interleaved 25 Check Digit

0: DO NOT transmit Interleaved 25 Check Digit

0 2D, (Extra)
Long Range

14 7 1: Interleaved 25 Code Length Limitation in Max/Min
Length Format

0: Interleaved 25 Code Length Limitation in Fixed Length
Format

0 2D, (Extra)
Long Range

14 6 - 0 Interleaved 25 Max Code Length / Fixed Length 1 0 2D, (Extra)
Long Range

15 7 - 0 Interleaved 25 Min Code Length / Fixed Length 2
Note Length1 must be greater than Length2.

0 2D, (Extra)
Long Range

 321

 Appendix II Symbology Parameters

37 7 - 6 00: DO NOT verify Interleaved 25 Check Digit

01: Verify Interleaved 25 USS Check Digit

10: Verify Interleaved 25 OPCC Check Digit

11: Undefined

00 2D, (Extra)
Long Range

39 4 1: Convert Interleaved 25 to EAN-13

0: No conversion

0 2D, (Extra)
Long Range

Transmit Check Digit

Decide whether or not to include the check digit in the data being transmitted.

Length Qualification

Because of the weak structure of the 2 of 5 symbologies, it is possible to make a “short scan”
error. To prevent the “short scan” error, define the “Length Qualification” settings to ensure that
the correct barcode is read by qualifying the allowable code length. Refer to Codabar.

Verify Check Digit

Decide whether or not to perform check digit verification when decoding barcodes.

 If true and the check digit found incorrect, the barcode will not be accepted.

Convert to EAN-13

Decide whether or not to convert a 14-character Interleaved 25 barcode into EAN-13. If true, the
next processing will follow the parameters configured for EAN-13.

 Interleaved 25 barcode must have a leading zero and a valid EAN-13 check digit.

Note: “Convert Interleaved 25 to EAN-13” cannot be enabled unless check digit
verification is disabled (= 00).

CODE 39

ScannerDesTbl[]

Byte Bit Description Default Scan Engine

0 7 1: Enable Code 39

0: Disable Code 39

1 2D, (Extra)
Long Range

0 6 1: Enable Code 32 (Italian Pharmacode)

0: Disable Code 32

0 2D, (Extra)
Long Range

5 6 1: Verify Code 39 Check Digit

0: DO NOT verify Code 39 Check Digit

0 2D, (Extra)
Long Range

5 5 1: Transmit Code 39 Check Digit

0: DO NOT transmit Code 39 Check Digit

0 2D, (Extra)
Long Range

5 4 1: Full ASCII Code 39

0: Standard Code 39

0 2D, (Extra)
Long Range

322

CipherLab C Programming Part I

23 7 1: Code 39 Length Limitation in Max/Min Length Format

0: Code 39 Length Limitation in Fixed Length Format

0 2D, (Extra)
Long Range

23 6 - 0 Code 39 Max Code Length / Fixed Length1 0 2D, (Extra)
Long Range

24 7 - 0 Code 39 Min Code Length / Fixed Length2
Note Length1 must be greater than Length2.

0 2D, (Extra)
Long Range

26 5 1: Enable Trioptic Code 39

0: Disable Trioptic Code 39

0 2D, (Extra)
Long Range

Verify Check Digit

Decide whether or not to perform check digit verification when decoding barcodes.

 If true and the check digit found incorrect, the barcode will not be accepted.

Note: “Verify Check Digit” must be enabled so that the check digit can be left out when it
is preferred not to transmit the check digit.

Transmit Check Digit

Decide whether or not to include the check digit in the data being transmitted.

Code 39 Full ASCII

Decide whether or not to support Code 39 Full ASCII that includes all the alphanumeric and
special characters.

Length Qualification

Refer to Codabar.

CODE 93

ScannerDesTbl[]

Byte Bit Description Default Scan Engine

0 0 1: Enable Code 93

0: Disable Code 93

1 2D, (Extra)
Long Range

28 7 1: Code 93 Length Limitation in Max/Min Length Format

0: Code 93 Length Limitation in Fixed Length Format

0 2D, (Extra)
Long Range

28 6 - 0 Code 93 Max Code Length / Fixed Length1 0 2D, (Extra)
Long Range

29 7 - 0 Code 93 Min Code Length / Fixed Length2
Note Length1 must be greater than Length2.

0 2D, (Extra)
Long Range

Length Qualification

Refer to Codabar.

 323

 Appendix II Symbology Parameters

CODE 128

CODE 128

ScannerDesTbl[]

Byte Bit Description Default Scan Engine

1 7 1: Enable Code 128

0: Disable Code 128

1 2D, (Extra)
Long Range

ISBT 128

ScannerDesTbl[]

Byte Bit Description Default Scan Engine

26 6 1: Enable ISBT 128

0: Disable ISBT 128

1 2D, (Extra)
Long Range

Note: ISBT 128 is a variant of Code 128 used in the blood bank industry.

UCC/EAN-128

ScannerDesTbl[]

Byte Bit Description Default Scan Engine

7 2 1: Enable GS1 formatting for EAN-128

0: Disable GS1 formatting for EAN-128

0 2D, (Extra)
Long Range

26 4 1: Enable UCC/EAN-128

0: Disable UCC/EAN-128

1 2D, (Extra)
Long Range

MSI

ScannerDesTbl[]

Byte Bit Description Default Scan Engine

2 5 1: Enable MSI

0: Disable MSI

1 2D, (Extra)
Long Range

Note: By default, MSI is disabled on 8200/8400/8700.

324

CipherLab C Programming Part I

9 7 - 6 MSI Check Digit Verification

00: Single Modulo 10

01: Double Modulo 10

10: Modulo 11 and Modulo 10

11: Undefined

01 2D, (Extra)
Long Range

9 5 - 4 MSI Check Digit Transmission

00: Last check digit is NOT transmitted

01: Both check digits are transmitted

10: Both check digits are NOT transmitted

11: Undefined

00 2D, (Extra)
Long Range

18 7 1: MSI 25 Code Length Limitation in Max/Min Length
Format

0: MSI 25 Code Length Limitation in Fixed Length Format

1 2D, (Extra)
Long Range

18 6 - 0 MSI Max Code Length / Fixed Length 1 Max. 31 2D, (Extra)
Long Range

19 7 - 0 MSI Min Code Length / Fixed Length 2
Note Length1 must be greater than Length2.

Min. 3 2D, (Extra)
Long Range

Verify Check Digit

Select one of the three calculations to perform check digit verification when decoding barcodes.

 If true and the check digit found incorrect, the barcode will not be accepted.

Transmit Check Digit

Decide whether or not to include the check digit in the data being transmitted.

Length Qualification

Because of the weak structure of the symbology, it is possible to make a “short scan” error. To
prevent the “short scan” error, define the “Length Qualification” settings to ensure that the correct
barcode is read by qualifying the allowable code length. Refer to Codabar.

 325

 Appendix II Symbology Parameters

GS1 DATABAR (RSS) FAMILY

ScannerDesTbl[]

Byte Bit Description Default Scan Engine

26 3 1: Convert GS1 DataBar to UPC/EAN

0: No conversion

0 2D, (Extra)
Long Range

26 2 1: Enable GS1 DataBar Expanded

0: Disable GS1 DataBar Expanded

1 2D, (Extra)
Long Range

26 1 1: Enable GS1 DataBar Limited

0: Disable GS1 DataBar Limited

1 2D, (Extra)
Long Range

26 0 1: Enable GS1 DataBar Omnidirectional

0: Disable GS1 DataBar Omnidirectional

1 2D, (Extra)
Long Range

44 7 1: Enable GS1 formatting for GS1 DataBar Omnidirectional

0: Disable

0 2D, (Extra)
Long Range

44 6 1: Enable GS1 formatting for GS1 DataBar Limited

0: Disable

0 2D, (Extra)
Long Range

44 5 1: Enable GS1 formatting for GS1 DataBar Expanded

0: Disable

0 2D, (Extra)
Long Range

Convert GS1 DataBar to UPC/EAN

Decide whether or not to convert the GS1 DataBar barcodes to UPC/EAN. If true,

(1) The leading “010” will be stripped from these barcodes and a “0” will be encoded as the first
digit; this will convert GS1 DataBar barcodes to EAN-13.

(2) For barcodes beginning with two or more zeros but not six zeros, this option will strip the
leading “0010” and report the barcode as UPC-A. The UPC-A Preamble setting that transmits the
system character and country code applies to such converted barcodes.

Note that neither the system character nor the check digit can be stripped.

 This only applies to GS1 DataBar Omnidirectional and GS1 DataBar Limited barcodes not
decoded as part of a Composite barcode.

326

CipherLab C Programming Part I

UPC/EAN FAMILIES

The UPC/EAN families include No Addon, Addon 2, and Addon 5 for the following
symbologies:

 UPC-E0
 UPC-E1
 UPC-A
 EAN-8
 EAN-13
 Bookland EAN (ISBN)

For any member belonging to the UPC/EAN families, Bit 0 of Byte 25 is used to decide
the joint configuration of No Addon, Addon 2, and Addon 5. Other parameters are listed
below.

ScannerDesTbl[]

Byte Bit Description Default Scan Engine

9 0 1: Convert UPC-A to EAN-13

0: No Conversion

0 8200, 8400,
8700 2D

9 1 1: Convert UPC-E0 to UPC-A

0: No conversion

0 2D, (Extra)
Long Range

10 5 1: Transmit UPC-E0 Check Digit

0: DO NOT transmit UPC-E0 Check Digit

1 2D, (Extra)
Long Range

10 4 1: Transmit UPC-A Check Digit

0: DO NOT transmit UPC-A Check Digit

1 2D, (Extra)
Long Range

10 1 1: Transmit UPC-E0 System Number

0: DO NOT transmit UPC-E0 System Number

1 2D, (Extra)
Long Range

10 0 1: Transmit UPC-A System Number

0: DO NOT transmit UPC-A System Number

1 2D, (Extra)
Long Range

11 7 1: Convert EAN-8 to EAN-13

0: No conversion

1 2D, (Extra)
Long Range

25 7 1: Transmit UPC-E1 System Number

0: DO NOT transmit UPC-E1 System Number

0 2D, (Extra)
Long Range

25 6 1: Transmit UPC-E1 Check Digit

0: DO NOT transmit UPC-E1 Check Digit

0 2D, (Extra)
Long Range

25 3 1: Convert UPC-E1 to UPC-A

0: No conversion

0 2D, (Extra)
Long Range

39 7 1: Enable UPC-A System Number & Country Code

0: Disable UPC-A System Number & Country Code

1 2D, (Extra)
Long Range

 327

 Appendix II Symbology Parameters

39 6 1: Enable UPC-E System Number & Country Code

0: Disable UPC-E System Number & Country Code

1 2D, (Extra)
Long Range

39 5 1: Enable UPC-E1 System Number & Country Code

0: Disable UPC-E1 System Number & Country Code

1 2D, (Extra)
Long Range

Convert UPC-E0/UPC-E1 to UPC-A

Decide whether or not to expand the read UPC-E0/UPC-E1 barcode into UPC-A. If true, the next
processing will follow the parameters configured for UPC-A.

Convert EAN-8 to EAN-13

Decide whether or not to expand the read EAN-8 barcode into EAN-13. If true, the next
processing will follow the parameters configured for EAN-13.

Transmit Check Digit

Decide whether or not to include the check digit in the data being transmitted.

Transmit System Number

Decide whether or not to include the system number will be included in the data being
transmitted.

328

CipherLab C Programming Part I

UCC COUPON CODE

ScannerDesTbl[]

Byte Bit Description Default Scan Engine

42 3 1: Enable UCC Coupon Code

0: Disable UCC Coupon Code

0 2D, (Extra)
Long Range

JOINT CONFIGURATION

ScannerDesTbl[]

Byte Bit Description Default Scan Engine

25 0 1: Enable Joint Configuration of No Addon, Addon 2 & 5
for Any Member of UPC/EAN Families

0: Disable Joint Configuration

0 2D, (Extra)
Long Range

 If Byte 25 - bit 0 for joint configuration is set to 1, the parameters of Table A can be
configured separately. It depends on which member of the families needs to be
enabled.

 If Byte 25 - bit 0 for Joint Configuration is set to 0, then

- When “ANY” of the bits of Table B is set to 1, only Addon 2 & 5 of the whole
UPC/EAN families is enabled. (= Disable No Addon)

- When “ALL” of the bits of Table B are set to 0, only No Addon is enabled that is
further decided by Table A.

When Results in

Byte 25 - bit 0 Byte/bit listed in

Table A

Byte/bit listed in

Table B

No Addon Addon 2 & 5

= 1 = 1 N/A Enabled Enabled

= 1 = 0 N/A Disabled Disabled

= 0 N/A Any = 1 DisabledNote

(All)

EnabledNote

(All)

= 0 = 1 All = 0 Enabled DisabledNote

(All)

= 0 = 0 All = 0 Disabled DisabledNote

(All)

Note: The result marked with “All” indicates it occurs with the whole UPC/EAN families.

 329

 Appendix II Symbology Parameters

Table A

Byte Bit Description Default Scan Engine

1 6 1: Enable UPC-E0

0: Disable UPC-E0 (depends)

1 2D, (Extra)
Long Range

1 3 1: Enable EAN-8

0: Disable EAN-8 (depends)

1 2D, (Extra)
Long Range

1 0 1: Enable EAN-13

0: Disable EAN-13 (depends)

1 2D, (Extra)
Long Range

25 1 1: Enable Bookland EAN

 (Byte 1 - bit 0 for EAN-13 is required to be 1.)

0: Disable Bookland EAN

0 2D, (Extra)
Long Range

27 7 1: Enable UPC-A

0: Disable UPC-A (depends)

1 2D, (Extra)
Long Range

27 5 1: Enable UPC-E1

0: Disable UPC-E1 (depends)

0 2D, (Extra)
Long Range

Note: (1) If Byte 25 - bit 0 is set to 1, No Addon, Addon 2, Addon 5 of the symbology
are enabled. (2) If Byte 25 - bit 0 is set to 0 (and all bits in Table B below must be set 0):
Only No Addon of the symbology is enabled.

Table B

Byte Bit Description Default Scan Engine

1 5 or
4 or
2 or
1

1: Enable Only Addon 2 & 5 of UPC & EAN Families

 (It requires “ANY” of the bits to be set 1.)

0: Disable Only Addon 2 & 5 of UPC & EAN Families

 (It requires “ALL” of the bits to be set 0.)

0 2D, (Extra)
Long Range

2 7 or
6

27 6 or
4

330

CipherLab C Programming Part I

CODE 11

The support of Code 11 on Long Range scan engine is currently implemented for 8300
only.

ScannerDesTbl[]

Byte Bit Description Default Scan Engine

25 2 1: Enable Code 11

0: Disable Code 11

1 2D, 8300–LR
only

Note: By default, Code 11 is disabled on 8200/8400/8700.

30 7 1: Code 11 Length Limitation in Max/Min Length Format

0: Code 11 Length Limitation in Fixed Length Format

0 2D, 8300–LR
only

30 6 - 0 Code 11 Max Code Length / Fixed Length1 0 2D, 8300–LR
only

31 7 - 0 Code 11 Min Code Length / Fixed Length2
Note Length1 must be greater than Length2.

0 2D, 8300–LR
only

42 1 - 0 Code 11 Check Digit Verification

00: Disable

01: One check digit

10: Two check digits

00 2D, 8300–LR
only

Length Qualification

The barcode can be qualified by “Fixed Length” or “Max/Min Length”. The length of a barcode
refers to the number of characters (= human readable characters), including check digit(s) it
contains.

 If “Fixed Length” is selected, up to 2 fixed lengths can be specified.

 If “Max/Min Length” is selected, the maximum length and the minimum length must be
specified. It only accepts those barcodes with lengths that fall between max/min lengths
specified.

Note: When it is configured to use Fixed Length format, Length1 must be greater than
Length2. Otherwise, the format will be converted to Max/Min Length Format, and
Length1 becomes Min. Length while Length2 becomes Max. Length. In either length
format, when both of the values are configured to 0, it means no limit in length.

 331

 Appendix II Symbology Parameters

2D SCAN ENGINE ONLY

In addition to those symbologies described previously, the 2D scan engine supports the
following symbologies:

1D SYMBOLOGIES

CHINESE 25

ScannerDesTbl[]

Byte Bit Description Default Scan Engine

42 2 1: Enable Chinese 25

0: Disable Chinese 25

0 8200, 8400,
8700 -2D

MATRIX 25

ScannerDesTbl[]

Byte Bit Description Default Scan Engine

0 2 1: Enable Matrix 25

0: Disable Matrix 25

0 8200, 8400,
8700 -2D

6 5 1: Verify Matrix 25 Check Digit

0: DO NOT verify Matrix 25 Check Digit

0 8200, 8400,
8700 -2D

6 4 1: Transmit Matrix 25 Check Digit

0: DO NOT transmit Matrix 25 Check Digit

0 8200, 8400,
8700 -2D

16 7 1: Matrix 25 Code Length Limitation in Max/Min Length
Format

0: Matrix 25 Code Length Limitation in Fixed Length
Format

1 8200, 8400,
8700 -2D

16 6 - 0 Matrix 25 Max Code Length / Fixed Length 1 0 8200, 8400,
8700 -2D

17 7 - 0 Matrix 25 Min Code Length / Fixed Length 2
Note Length1 must be greater than Length2.

0 8200, 8400,
8700 -2D

UPC/EAN — BOOKLAND ISBN FORMAT

ScannerDesTbl[]

Byte Bit Description Default Scan Engine

332

CipherLab C Programming Part I

41 6 UPC/EAN – Bookland ISBN Format

1: UPC/EAN – Bookland ISBN 13

0: UPC/EAN – Bookland ISBN 10

0 8200, 8400,
8700 -2D

1D INVERSE

ScannerDesTbl[]

Byte Bit Description Default Scan Engine

40 2 - 1 1D Inverse Decoder

00: Decode regular 1D barcode only

01: Decode inverse 1D barcode only

10: Decode both regular and inverse

00 8200, 8400,
8700 -2D

 333

 Appendix II Symbology Parameters

POSTAL CODE FAMILY

ScannerDesTbl[]

Byte Bit Description Default Scan Engine

36 7 1: Transmit US Postal Check Digit

0: DO NOT transmit US Postal Check Digit

1 2D

36 3 1: Enable US Planet

0: Disable US Planet

1 2D

36 2 1: Enable US Postnet

0: Disable US Postnet

1 2D

37 4 1: Enable Japan Postal

0: Disable Japan Postal

1 2D

37 3 1: Enable Australian Postal

0: Disable Australian Postal

1 2D

37 2 1: Enable Dutch Postal

0: Disable Dutch Postal

1 2D

37 1 1: Enable UK Postal Check Digit

0: Disable UK Postal Check Digit

1 2D

37 0 1: Enable UK Postal

0: Disable UK Postal

1 2D

Transmit Check Digit

Decide whether or not to include the check digit in the data being transmitted.

39 0 1: Enable USPS 4CB / One Code / Intelligent Mail

0: Disable USPS 4CB / One Code / Intelligent Mail

0 8200, 8400,
8700 -2D

41 7 1: Enable UPU FICS Postal

0: Disable UPU FICS Postal

0 8200, 8400,
8700 -2D

334

CipherLab C Programming Part I

COMPOSITE CODES

CC-A/B/C

ScannerDesTbl[]

Byte Bit Description Default Scan Engine

27 1 1: Enable Composite CC-A/B

0: Disable Composite CC-A/B

0 2D

27 0 1: Enable Composite CC-C

0: Disable Composite CC-C

0 2D

44 4 1: Enable GS1 formatting for Composite CC-A/B

0: Disable GS1 formatting for Composite CC-A/B

0 2D

44 3 1: Enable GS1 formatting for Composite CC-C

0: Disable GS1 formatting for Composite CC-C

0 2D

TLC-39

ScannerDesTbl[]

Byte Bit Description Default Scan Engine

25 4 1: Enable TCIF Linked Code 39

0: Disable TCIF Linked Code 39

1 2D

Note: Code 39 must be enabled first!

 335

 Appendix II Symbology Parameters

UPC COMPOSITE

ScannerDesTbl[]

Byte Bit Description Default Scan Engine

27 3 - 2 00: UPC Never Linked

01: UPC Always Linked

10: Autodiscriminate UPC Composite

11: Undefined

01 2D

Select UPC Composite Mode

UPC barcode can be “linked” with a 2D barcode during transmission as if they were one barcode.

There are three options for these barcodes:

UPC Never Linked

Transmit UPC barcodes regardless of whether a 2D barcode is detected.

UPC Always Linked

Transmit UPC barcodes and the 2D portion. If the 2D portion is not detected, the UPC barcode
will not be transmitted.

 CC-A/B or CC-C must be enabled!

Auto-discriminate UPC Composites

Transmit UPC barcodes as well as the 2D portion if present.

Note: If “UPC Always Linked” is enabled, either CC-A/B or CC-C must be enabled.
Otherwise, it will not transmit even there are UPC barcodes.

GS1-128 EMULATION MODE FOR UCC/EAN COMPOSITE CODES

ScannerDesTbl[]

Byte Bit Description Default Scan Engine

25 5 1 : Enable GS1-128 Emulation Mode for UCC/EAN
Composite Codes

0 : Disable GS1-128 Emulation Mode for UCC/EAN
Composite Codes

0 2D

336

CipherLab C Programming Part I

2D SYMBOLOGIES

MAXICODE, DATA MATRIX & QR CODE

ScannerDesTbl[]

Byte Bit Description Default Scan Engine

36 6 1: Enable Maxicode

0: Disable Maxicode

1 2D

36 5 1: Enable Data Matrix

0: Disable Data Matrix

1 2D

36 4 1: Enable QR Code

0: Disable QR Code

1 2D

42 7 1: Enable MicroQR

0: Disable MicroQR

1 8200, 8400,
8700 -2D

42 6 1: Enable Aztec

0: Disable Aztec

1 8200, 8400,
8700 -2D

2D INVERSE/MIRROR

ScannerDesTbl[]

Byte Bit Description Default Scan Engine

41 5 – 4 Data Matrix Inverse

00: Decode regular Data Matrix only

01: Decode inverse Data Matrix only

10: Decode both regular and inverse

00 8200, 8400,
8700 -2D

41 3 - 2 Data Matrix Mirror

00: Decode unmirrored Data Matrix only

01: Decode mirrored Data Matrix only

10: Decode both mirrored and unmirrored

00 8200, 8400,
8700 -2D

41 1 – 0 QR Code Inverse

00: Decode regular QR Code only

01: Decode inverse QR Code only

10: Decode both regular and inverse

00 8200, 8400,
8700 -2D

42 5 - 4 Aztec Inverse

00: Decode regular Aztec only

01: Decode inverse Aztec only

10: Decode both regular and inverse

00 8200, 8400,
8700 -2D

 337

 Appendix II Symbology Parameters

PDF417

ScannerDesTbl[]

Byte Bit Description Default Scan Engine

36 1 1: Enable MicroPDF417

0: Disable MicroPDF417

1 2D

36 0 1: Enable PDF417

0: Disable PDF417

1 2D

39 3 - 2 Macro PDF Transmit / Decode Mode

00: Passthrough all symbols

01: Buffer all symbols / Transmit Macro PDF when
complete

10: Transmit any symbol in set / No particular order

00 2D

39 1 1: Enable Macro PDF Escape Characters

0: Disable Macro PDF Escape Characters

0 2D

Macro PDF Transmit / Decode Mode

Macro PDF is a special feature for concatenating multiple PDF barcodes into one file, known as
Macro PDF417 or Macro MicroPDF417.

Decide how to handle Macro PDF decoding -

Buffer All Symbols / Transmit Macro PDF When Complete

Transmit all decoded data from an entire Macro PDF sequence only when the entire sequence is
scanned and decoded. If the decoded data exceeds the limit of 50 symbols, no transmission
because the entire sequence was not scanned!

 The transmission of the control header must be disabled.

Transmit Any Symbol in Set / No Particular Order

Transmit data from each Macro PDF symbol as decoded, regardless of the sequence.

 The transmission of the control header must be enabled.

Passthrough All Symbols

Transmit and decode all Macro PDF symbols and perform no processing. In this mode, the host
is responsible for detecting and parsing the Macro PDF sequences.

Macro PDF Escape Characters

338

CipherLab C Programming Part I

Decide whether or not to transmit the Escape character. If true, it uses the backslash “\” as an
Escape character for systems that can process transmissions containing special data sequences.

 It will format special data according to the Global Label Identifier (GLI) protocol, which only
affects the data portion of a Macro PDF symbol transmission. The Control Header is always
sent with GLI formatting.

 339

This appendix describes the associated scanner parameters.

IN THIS CHAPTER

Scan Mode ... 339
Read Redundancy ... 342
Time-Out ... 343
User Preferences .. 343

SCAN MODE

Byte 20 of the unsigned character array ScannerDesTbl is used to define a scan mode
that best suits the requirements of a specific application. Refer to Time-Out.

Byte Bit Description Default Scan Engine

20 7 - 4 Scan Mode for Scanner Port 1

0000: Auto Off Mode

0001: Continuous Mode

0010: Auto Power Off Mode

0011: Alternate Mode

0100: Momentary Mode

0101: Repeat Mode

0110: Laser Mode

0111: Test Mode

1000: Aiming Mode

Laser
Mode

CCD, Laser,
8700-Long
Range

20 7 - 4 Scan Mode for Scanner Port 1

1000: Aiming Mode

0111: Test Mode

0110: Laser Mode

0011: Alternate Mode

0001: Continuous Mode

0000: Auto-off Mode

Any value other than the above: Laser Mode

Laser
Mode

2D, (Extra)
Long Range

Appendix III
SCANNER PARAMETERS

340

CipherLab C Programming Part I

 For CCD or Laser scan engine, it supports 9 scan modes. See the comparison table
below. Byte 21 is used for timeout duration, if necessary.

 For (Extra) Long Range Laser scan engine, it only supports Laser and Aiming modes.

When in aiming mode, it will generate an aiming dot once you press the trigger key.

The aiming dot will not go off until it times out or you press the trigger key again to
start scanning. Byte 38 is used for timeout duration, if necessary.

COMPARISON TABLE

Scan Mode Start to Scan Stop Scanning

 Always Press
trigger
once

Hold
trigger

Press
trigger
twice

Release
trigger

Press
trigger
once

Barcode
being
read

Timeout

Continuous mode 

Test mode 

Repeat mode 

Momentary mode  

Alternate mode  

Aiming mode   

Laser mode    

Auto Off mode   

Auto Power Off
mode

  

Continuous Mode

Non-stop scanning

 To decode the same barcode repeatedly, move away the scan beam and target it at the
barcode for each scanning.

Test Mode

Non-stop scanning (for testing purpose)

 Capable of decoding the same barcode repeatedly.

Repeat Mode

Non-stop scanning

 Capable of re-transmitting barcode data if triggering within one second after a successful
decoding.

 Such re-transmission can be activated as many times as needed, as long as the time interval
between each triggering does not exceed one second.

 341

 Appendix III Scanner Parameters

Momentary Mode

Hold down the scan trigger to start with scanning.

 The scanning won't stop until you release the trigger.

Alternate Mode

Press the scan trigger to start with scanning.

 The scanning won't stop until you press the trigger again.

Aiming Mode

Press the scan trigger to aim at a barcode. Within one second, press the trigger again to decode
the barcode.

 The scanning won't stop until (a) a barcode is decoded, (b) the preset timeout expires, or (c)
you release the trigger.

Note: The system global variable AIMING_TIMEOUT can be used to change the default
one-second timeout interval for aiming. The unit for this variable is 5 ms.

Laser Mode

Hold down the scan trigger to start with scanning.

 The scanning won't stop until (a) a barcode is decoded, (b) the preset timeout expires, or (c)
you release the trigger.

Auto Off Mode

Press the scan trigger to start with scanning.

 The scanning won't stop until (a) a barcode is decoded, or (b) the preset timeout expires.

Auto Power Off Mode

Press the scan trigger to start with scanning.

 The scanning won't stop until the pre-set timeout expires, and, the preset timeout period
re-counts after each successful decoding.

342

CipherLab C Programming Part I

READ REDUNDANCY

This parameter is used to specify the level of reading security. You will have to
compromise between reading security and decoding speed.

Byte Bit Description Default Scan Engine

11 3 - 2 00: No Read Redundancy for Scanner Port 1

01: One Time Read Redundancy for Scanner Port 1

10: Two Times Read Redundancy for Scanner Port 1

11: Three Times Read Redundancy for Scanner Port 1

00 CCD, Laser,
8700-Long
Range

43 6-5 00: No Read Redundancy

01: One Time Read Redundancy

10: Two Times Read Redundancy

00 CCD, Laser,
8700-Long
Range

 No Redundancy:

If “No Redundancy” is selected, one successful decoding will make the reading valid
and induce the “READER Event”.

 One/Two/Three Times:

If “Three Times” is selected, it will take a total of four consecutive successful
decodings of the same barcode to make the reading valid. The higher the reading
security is (that is, the more redundancy the user selects), the slower the reading
speed gets.

 343

 Appendix III Scanner Parameters

TIME-OUT

These parameters are used to limit the maximum scanning time interval for a specific
scan mode.

Byte Bit Description Default Scan Engine

21 7 - 0 Scanner time-out duration in seconds for Aiming mode,
Laser mode, Auto Off mode, and Auto Power Off mode

1 ~ 255 (sec): Decode time-out

0: No time-out

3 sec. CCD, Laser,
8700-Long
Range

38 7 - 0 Scanner time-out duration in seconds for Aiming mode,
Laser mode and Auto-off mode

1 ~ 255 (sec): Decode time-out

0: No time-out (= always scanning)

3 sec. 2D, (Extra)
Long Range

Note: For aiming time-out duration for Aiming mode, use global variable
AIMING_TIMEOUT. Refer to 2.1.3 System Global Variables.

USER PREFERENCES

Byte Bit Description Default Scan Engine

40 7 - 6 00: Far Focus

01: Near Focus

10: Smart Focus

00 8500-2D

40 5 1: Enable Decode Aiming Pattern

0: Disable Decode Aiming Pattern

1 2D

40 4 1: Enable Decode Illumination

0: Disable Decode Illumination

1 2D

40 3 1: Enable Picklist Mode

0: Disable Picklist Mode

0 8200, 8400,
8700 -2D

Note: Picklist mode enables the decoder to decode only barcodes aligned under the
center of the laser aiming pattern.

40 0 1: Reader sleeps during system suspend

0: Reader is powered off during system suspend

0 8200, 8400,
8700 -2D

43 7 1: Enable Mobile Display

0: Disable Mobile Display

0 2D

Note: If the reader is powered off during system suspend, it will save battery power.
However, it takes about 3 seconds to restart the power after system resumes.

344

CipherLab C Programming Part I

_
_KeepAlive__ • 22

A
access • 144
ActivateProgram • 41
add_member • 162
AIMING_TIMEOUT • 27
append • 147
appendln • 148
AUTO_OFF • 27

B
BC_X • 28
BC_Y • 28
beeper_status • 78
BKLIT_TIMEOUT • 27
BootloaderVersion • 33

C
ChangeSpeed • 22
charger_status • 88
CheckFont • 132
CheckKey • 90
CheckKeyEnter • 103
CheckPasswordActive • 37
CheckSysPassword • 37
CheckWakeUp • 23
chmod • 197
chmodfp • 198
chsize • 149
circle • 125
close • 150
close_DBF • 163
clr_eol • 120
clr_icon • 120
clr_kb • 91
clr_rect • 120
clr_scr • 121
CodeBuf • 54
CodeLen • 55
CodeType • 54, 55
Configure_Reader • 55
create_DBF • 164
create_index • 165

D
DayOfWeek • 84
DecContrast • 104
Decode • 56
delete_member • 166
delete_top • 151
delete_topln • 152
DeleteBank • 41
DeviceType • 30
dis_alpha • 95
DownLoadPage • 49
DownLoadProgram • 42

E
en_alpha • 95
eof • 153
EraseSector • 139

F
fclose • 199
fclosedir • 199
fcopy • 200, 213
feof • 200
ferror • 218
fflush • 201
fformat • 201
ffreebyte • 141
fgetc • 202
fgetinfo • 202
fgetpos • 203
fgets • 204
filelength • 153
filelist • 144
fill_rect • 114
FlashSize • 139
FontVersion • 33
fopen • 205
fopendir • 206
fputc • 206
fputs • 207
fread • 208
freaddir • 209
free_memory • 140
fremove • 209
frename • 210
fscan • 210
fseek • 211

INDEX

CipherLab C Programming Part I

fsetpos • 212
fsize • 141
ftell • 212
fwrite • 213

G
get_alpha_enable_state • 96
get_alpha_lock_state • 96
get_beeper_vol • 78
get_file_number • 145
get_image • 123
get_member • 167
get_shift_lock_state • 98
get_time • 84
get_vbackup • 87
get_vmain • 87
GetAlarm • 86
GetAltKeyState • 99
GetBklitLevel • 107
getchar • 91
GetContrast • 105
GetCursor • 112
GetFileInfo • 185
GetFont • 133
GetFuncExtKey • 102
GetFuncToggle • 100
GetHeaterMode • 83
GetIOPinStatus • 24
GetKBDModifierStatus • 92
GetKeyClick • 93
GetMassStorageStatus • 215
GetMenuPauseTime • 53
GetPoint • 128
GetRFIDSecurityKey • 67
GetRFmode • 33
GetScreenItem • 128
GetTouchScreenState • 129
GetUSBChargeCurrent • 89
GetVibrator • 82
GetVideoMode • 105
gotoxy • 112
gui_TouchScreenActivateCalendar • 260
gui_TouchScreenActivateComboList •

251
gui_TouchScreenActivateField • 231
gui_TouchScreenActivateFieldTouchPad •

238
gui_TouchScreenActivateForm • 223
gui_TouchScreenActivateListBox • 248
gui_TouchScreenActivatePopUpMenu •

254
gui_TouchScreenActivateSignatureBox •

243
gui_TouchScreenActivateSWKeypad •

234

gui_TouchScreenActivateTabList • 245
gui_TouchScreenActivateTextBoxInput •

241
gui_TouchScreenCenterStr • 220
gui_TouchScreenClearField • 228
gui_TouchScreenDefineField • 226
gui_TouchScreenDisableCalendar • 261
gui_TouchScreenDisableComboList • 253
gui_TouchScreenDisableField • 233
gui_TouchScreenDisableFieldTouchPad •

240
gui_TouchScreenDisableForm • 225
gui_TouchScreenDisableListBox • 250
gui_TouchScreenDisablePopUpMenu •

256
gui_TouchScreenDisableSignatureBox •

244
gui_TouchScreenDisableSWKeypad • 236
gui_TouchScreenDisableTabList • 247
gui_TouchScreenDisableTextBoxInput •

242
gui_TouchScreenFieldInput • 229
gui_TouchScreenGetCharFromSWKeypad

 • 237
gui_TouchScreenPrintScreenLines • 222
gui_TouchScreenPrintTitle • 221
gui_TouchScreenSetFieldFocus • 230
gui_TouchScreenShowMemoBox • 259
gui_TouchScreenShowMsgBox • 257
gui_TouchScreenShowResourceInfo •

262

H
HaltScanner1 • 56
HaltTouchScreen • 129
HardwareVersion • 33
has_member • 168

I
ICON_ZONE • 115
IncContrast • 105
init_free_memory • 140
InitScanner1 • 57
InitTouchScreen • 129
InputPassword • 37
IrDA_Timeout • 28

K
kbhit • 93
KernelVersion • 34
KEY_CLICK • 28
KeypadLayout • 34

 Index

L
lcd_backlit • 107, 108
LibraryVersion • 34
line • 125
LoadProgram • 43
LockAlphaState • 97
lseek • 154
lseek_DBF • 169

M
ManufactureDate • 34
member_in_DBF • 170
mkdir • 214

N
NetVersion • 35

O
off_beeper • 79
on_beeper • 79
open • 155
open_DBF • 171
OriginalSerialNumber • 35
OS_ENTER_CRITICAL • 274
OS_EXIT_CRITICAL • 274
OSKToggle • 94
OSSemCreate • 275
OSSemPend • 276
OSSemPost • 277
OSTaskCreate • 278
OSTaskDel • 279
OSTimeDly • 279

P
play • 80
POWER_ON • 27
prc_menu • 51
printf • 116
ProgramInfo • 43
ProgramManager • 44
ProgVersion • 29
putch • 93
putchar • 118
putpixel • 126
puts • 118

R
RamSize • 140
RAMtoSD_DAT • 178
RAMtoSD_DBF • 182
read • 156
read_error_code • 145
readln • 157
rebuild_index • 172

rectangle • 126
remove • 145
remove_index • 174
rename • 146
RFIDReadFormat • 66
RFIDVersion • 36
RFIDWriteFormat • 66
rmdir • 214

S
SaveSysPassword • 38
ScannerDesTbl • 54
SDtoRAM_DAT • 180
SDtoRAM_DBF • 184, 185
SendData • 70
SerialNumber • 36
set_alpha_lock • 97
set_beeper_vol • 78
set_led • 81
set_shift_lock • 98
set_time • 85
SetAlarm • 86
SetAltKey • 99
SetAutoBklit • 108
SetBklitControl • 110
SetBklitLevel • 107
SetContrast • 105
SetContrastControl • 111
SetCursor • 112
SetFont • 134
SetFuncExtKey • 102
SetFuncToggle • 101
SetHeaterMode • 83
SetKeyClick • 94
SetLanguage • 135
SetMenuPauseTime • 53
SetMiddleEnter • 103, 104
SetPistolEnter • 104
SetPwrKey • 25
SetRFIDSecurityKey • 68
SetTrigger • 94
SetUSBChargeCurrent • 89
SetVibrator • 82
SetVideoMode • 106
show_image • 123
shut_down • 25
SignatureCapture • 129
sys_msec • 27
sys_sec • 27
SysSuspend • 25
system_restart • 25

T
tell • 158
tell_DBF • 175

CipherLab C Programming Part I

TriggerStatus • 94

U
UnpackDBF • 176
update_member • 177
UpdateBank • 44
UpdateBootloader • 45
UpdateKernel • 46
UpdateUser • 47

W
WaitHourglass • 119
WakeUp_Event_Mask • 28
WedgeReady • 70
WEDGESETTING • 69
wherex • 113
wherexy • 113
wherey • 113
write • 159
WriteFlash • 139
writeln • 160

	Release Notes
	Introduction
	Development Environment
	1.1 Directory Structure & Variables
	1.1.1 Directory Structure
	1.1.2 Environment Variables

	1.2 Development Flow
	1.2.1 Create Your Own C Source Program
	1.2.2 Compile
	1.2.3 Link
	1.2.4 Format Conversion
	1.2.5 Download Program to Flash Memory

	1.3 C Compiler
	1.3.1 Size of Types
	1.3.2 Representation Range of Integers
	1.3.3 Floating Types
	1.3.4 Alignment
	1.3.5 Register and Interrupt Handling
	1.3.6 Reserved Words
	1.3.7 Extended Reserved Words
	1.3.8 Bit-Field Usage

	Mobile-Specific Function Library
	2.1 System
	2.1.1 General
	2.1.2 Power On Reset (POR)
	2.1.3 System Global Variables
	2.1.4 System Information
	2.1.5 Security
	2.1.6 Program Manager
	2.1.7 Download Mode
	2.1.8 Menu Design
	MENU Structure
	MENU_ENTRY Structure
	MENU Pause Time

	2.2 Barcode Reader
	2.2.1 Barcode Decoding
	2.2.2 Code Type
	2.2.3 Scanner Description Tables

	2.3 RFID Reader
	2.3.1 Virtual COM
	2.3.2 RFIDParameter Structure
	2.3.3 RFID Data Format
	2.3.4 RFID Authentication

	2.4 Keyboard Wedge
	2.4.1 Definition of the WedgeSetting Array
	1st Element: KBD / Terminal Type
	2nd Element
	3rd Element: Inter-Character Delay

	2.4.2 Composition of Output String
	2.4.3 Wedge Emulator

	2.5 Buzzer
	2.5.1 Beep Sequence
	2.5.2 Beep Frequency
	2.5.3 Beep Duration

	2.6 LED Indicator
	2.7 Vibrator & Heater
	2.7.1 Vibrator
	2.7.2 Heater

	2.8 Real-Time Clock
	2.8.1 Calendar
	2.8.2 Alarm

	2.9 Battery & Charging
	2.9.1 Battery Voltage
	2.9.2 Charging Status

	2.10 Keypad
	2.10.1 General
	2.10.2 ALPHA Key
	2.10.3 SHIFT Key
	2.10.4 ALT Key
	2.10.5 FN Key
	Extended Function Keys

	2.10.6 ENTER Key

	2.11 LCD
	2.11.1 Properties
	2.11.2 Cursor
	2.11.3 Display
	2.11.4 Clear
	2.11.5 Image
	2.11.6 Graphics

	2.12 Touch Screen
	2.12.1 ItemProperty Structure
	2.12.2 Example

	2.13 Fonts
	2.13.1 Font Size
	2.13.2 Display Capability
	2.13.3 Multi-Language Font
	2.13.4 Special Fonts
	2.13.5 Font Files

	2.14 Memory
	2.14.1 Flash
	2.14.2 SRAM
	2.14.3 SD Card

	2.15 File Manipulation
	2.15.1 File System
	2.15.2 Directory
	2.15.3 File Name
	2.15.4 File Handle (File Descriptor)
	2.15.5 Error Code
	2.15.6 DAT Files
	2.15.7 DBF Files and IDX Files
	Key Number
	Key Value

	2.15.8 File Transfer via SD Card
	2.15.9 Get File Information
	2.15.10 DEVICE_FILEINFO Structure

	2.16 SD Card
	2.16.1 File System
	2.16.2 Directory
	2.16.3 File Name
	2.16.4 FILEINFO Structure
	2.16.5 SD Card Manipulation
	2.16.6 Mass Storage Device
	2.16.7 Error Code

	2.17 Graphical User Interface
	2.17.1 Text Center Alignement
	2.17.2 Title
	2.17.3 Background
	2.17.4 Form or Dialog
	2.17.5 Field Settings
	2.17.6 Input Field
	2.17.7 Touchpad
	2.17.8 Get Character for Soft Key
	2.17.9 Field with Touchpad
	2.17.10 Multi-Line Input (Text Box) with Touchpad
	2.17.11 Signature Box
	2.17.12 Tab List
	2.17.13 List Box
	2.17.14 Combo List
	2.17.15 Pop-up Menu
	2.17.16 Message Box
	2.17.17 Memo Box
	2.17.18 Calendar
	2.17.19 Graphical Information
	2.17.20 S_Button Structure
	2.17.21 S_FormField Structure
	2.17.22 S_MenuData Structure

	Standard Library Routines
	Real-Time Kernel
	ScannerDesTbl Arrays
	Symbology Parameter Table for CCD/LASER/Long Range Reader
	ScannerDesTbl[]
	ScannerDesTbl2[]

	Symbology Parameter Table for 2D/Extra Long Range Reader
	ScannerDesTbl[]

	Symbology Parameters
	Scan Engine, CCD or Laser
	Codabar
	Code 2 of 5 Family
	Industrial 25
	Interleaved 25
	Matrix 25
	Coop 25

	Code 39
	Code 93
	Code 128/EAN-128/ISBT 128
	Italian/French Pharmacode
	MSI
	Negative Barcode
	Plessey
	GS1 DataBar (RSS) Family
	Telepen
	UPC/EAN Families
	EAN-8
	EAN-13
	EAN-13 Addon Mode
	GTIN
	UPC-A
	UPC-E
	Addon Security for UPC/EAN

	Scan Engine, 2D or (Extra) Long Range Laser
	Codabar
	Code 2 of 5
	Industrial 25 (Discrete 25)
	Interleaved 25

	Code 39
	Code 93
	Code 128
	Code 128
	ISBT 128
	UCC/EAN-128

	MSI
	GS1 DataBar (RSS) Family
	UPC/EAN Families
	UCC Coupon Code
	Joint Configuration
	Code 11

	2D Scan Engine Only
	1D Symbologies
	Chinese 25
	Matrix 25
	UPC/EAN — Bookland ISBN Format
	1D Inverse
	Postal Code Family

	Composite Codes
	CC-A/B/C
	TLC-39
	UPC Composite
	GS1-128 Emulation Mode for UCC/EAN Composite Codes

	2D Symbologies
	Maxicode, Data Matrix & QR Code
	2D Inverse/Mirror
	PDF417

	Scanner Parameters
	Scan Mode
	Comparison Table

	Read Redundancy
	Time-Out
	User Preferences

	Index

